diff options
-rw-r--r-- | PlaygroundCpp/Sources/Playground.cpp | 71 |
1 files changed, 49 insertions, 22 deletions
diff --git a/PlaygroundCpp/Sources/Playground.cpp b/PlaygroundCpp/Sources/Playground.cpp index 73738d3..47575e1 100644 --- a/PlaygroundCpp/Sources/Playground.cpp +++ b/PlaygroundCpp/Sources/Playground.cpp @@ -1,27 +1,54 @@ #include <iostream> -using std::cin; -using std::cout; +#include <cassert> -int main() { - int bigger = 0; - int biggest = 0; - int n; - int i; - cin >> n; - - for (int j = 0; j < n; j++) { - cin >> i; - if (i > biggest) { - bigger = biggest; - biggest = i; - } else if (i == biggest) { - bigger = i; - } else if (i > bigger) { - bigger = i; +// The following code calls a naive algorithm for computing a Fibonacci number. +// +// What to do: +// 1. Compile the following code and run it on an input "40" to check that it is slow. +// You may also want to submit it to the grader to ensure that it gets the "time limit exceeded" message. +// 2. Implement the fibonacci_fast procedure. +// 3. Remove the line that prints the result of the naive algorithm, comment the lines reading the input, +// uncomment the line with a call to test_solution, compile the program, and run it. +// This will ensure that your efficient algorithm returns the same as the naive one for small values of n. +// 4. If test_solution() reveals a bug in your implementation, debug it, fix it, and repeat step 3. +// 5. Remove the call to test_solution, uncomment the line with a call to fibonacci_fast (and the lines reading the input), +// and submit it to the grader. + +int fibonacci_naive(int n) { + if (n <= 1) + return n; + + return fibonacci_naive(n - 1) + fibonacci_naive(n - 2); +} + +int64_t fibonacci_fast(int n) { + // write your code here + if (n <= 1) + return (int64_t) n; + int64_t fibArray [n+1]; + fibArray[0] = 0; + fibArray[1] = 1; + for (int j = 2; j < n+1; j++) { + fibArray[j] = fibArray[j - 1] + fibArray[j - 2]; } - } + return fibArray[n]; + +} + +void test_solution() { + assert(fibonacci_fast(3) == 2); + assert(fibonacci_fast(10) == 55); + for (int n = 0; n < 20; ++n) + assert(fibonacci_fast(n) == fibonacci_naive(n)); +} - int64_t prod = (int64_t) bigger * (int64_t) biggest; - cout << prod << "\n"; - return 0; +int main() { + int n = 0; + std::cin >> n; + +// std::cout << fibonacci_naive(n) << '\n'; +// test_solution(); + std::cout << fibonacci_fast(n) << '\n'; + return 0; } + |