#include #include // The following code calls a naive algorithm for computing a Fibonacci number. // // What to do: // 1. Compile the following code and run it on an input "40" to check that it is slow. // You may also want to submit it to the grader to ensure that it gets the "time limit exceeded" message. // 2. Implement the fibonacci_fast procedure. // 3. Remove the line that prints the result of the naive algorithm, comment the lines reading the input, // uncomment the line with a call to test_solution, compile the program, and run it. // This will ensure that your efficient algorithm returns the same as the naive one for small values of n. // 4. If test_solution() reveals a bug in your implementation, debug it, fix it, and repeat step 3. // 5. Remove the call to test_solution, uncomment the line with a call to fibonacci_fast (and the lines reading the input), // and submit it to the grader. int fibonacci_naive(int n) { if (n <= 1) return n; return fibonacci_naive(n - 1) + fibonacci_naive(n - 2); } int64_t fibonacci_fast(int n) { // write your code here if (n <= 1) return (int64_t) n; int64_t fibArray [n+1]; fibArray[0] = 0; fibArray[1] = 1; for (int j = 2; j < n+1; j++) { fibArray[j] = fibArray[j - 1] + fibArray[j - 2]; } return fibArray[n]; } void test_solution() { assert(fibonacci_fast(3) == 2); assert(fibonacci_fast(10) == 55); for (int n = 0; n < 20; ++n) assert(fibonacci_fast(n) == fibonacci_naive(n)); } int main() { int n = 0; std::cin >> n; // std::cout << fibonacci_naive(n) << '\n'; // test_solution(); std::cout << fibonacci_fast(n) << '\n'; return 0; }