
Algorithmic Design and Techniques:
Programming Challenges (Week 1)

February 3, 2018

Contents

1 Sum of Two Digits 3
1.1 Implementing an Algorithm 4
1.2 Submitting to the Grading System at edX 6

2 Maximum Pairwise Product 8
2.1 Naive Algorithm . 9
2.2 Fast Algorithm . 13
2.3 Testing and Debugging . 13
2.4 Can You Tell Me What Error Have I Made? 15
2.5 Stress Testing . 16
2.6 Even Faster Algorithm . 20
2.7 A More Compact Algorithm 21

3 Solving a Programming Challenge in Five Easy Steps 21
3.1 Reading Problem Statement 21
3.2 Designing an Algorithm . 22
3.3 Implementing an Algorithm 22
3.4 Testing and Debugging . 23
3.5 Submitting to the Grading System 24

4 Appendix: Compiler Flags 24

To introduce you to our automated grading system, we will discuss
two simple programming challenges and walk you through a step-by-step
process of solving them. We will encounter several common pitfalls and
will show you how to fix them.

Below is a brief overview of what it takes to solve a programming chal-
lenge in five steps:

Reading problem statement. The problem statement specifies the input-
output format, the constraints for the input data as well as time and
memory limits. Your goal is to implement a fast program that solves
the problem and works within the time and memory limits.

Designing an algorithm. When the problem statement is clear, start de-
signing an algorithm and don’t forget to prove that it works correctly.

Implementing an algorithm. After you developed an algorithm, start
implementing it in a programming language of your choice.

Testing and debugging your program. Testing is the art of revealing
bugs. Debugging is the art of exterminating the bugs. When your
program is ready, start testing it! If a bug is found, fix it and test
again.

Submitting your program to the grading system. After testing and de-
bugging your program, submit it to the grading system and wait for
the message “Good job!”. In the case you see a different message,
return back to the previous stage.

2

1 Sum of Two Digits

Sum of Two Digits Problem
Compute the sum of two single digit numbers.

Input: Two single digit numbers.
Output: The sum of these num-
bers.

2 + 3 = 5

We start from this ridiculously simple problem to show you the
pipeline of reading the problem statement, designing an algorithm, im-
plementing it, testing and debugging your program, and submitting it to
the grading system.

Input format. Integers a and b on the same line (separated by a space).

Output format. The sum of a and b.

Constraints. 0 ≤ a,b ≤ 9.

Sample.
Input:
9 7

Output:
16

Time limits (sec.):

C C++ Java Python Haskell JavaScript Scala

1 1 1.5 5 2 5 3

Memory limit. 512 Mb.

3

1.1 Implementing an Algorithm

For this trivial problem, we will skip “Designing an algorithm” step and
will move right to the pseudocode.

SumOfTwoDigits(a, b):
return a+ b

Since the pseudocode does not specify how we input a and b, below we
provide solutions in C++, Java, and Python3 programming languages as
well as recommendations on compiling and running them. You can copy-
and-paste the code to a file, compile/run it, test it on a few datasets, and
then submit (the source file, not the compiled executable) to the grading
system. Needless to say, we assume that you know the basics of one of
programming languages that we use in our grading system.

C++

#include <iostream>

int main() {
int a = 0;
int b = 0;
std::cin >> a;
std::cin >> b;
std::cout << a + b;
return 0;
}

Save this to a file (say, aplusb.cpp), compile it, run the resulting
executable, and enter two numbers (on the same line).

Java

import java.util.Scanner;

class APlusB {
public static void main(String[] args) {

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();

4

System.out.println(a + b);
}
}

Save this to a file APlusB.java, compile it, run the resulting exe-
cutable, and enter two numbers (on the same line).

Python3

Uses python3
import sys

input = sys.stdin.read()
tokens = input.split()
a = int(tokens[0])
b = int(tokens[1])
print(a + b)

Save this to a file (say, aplusb.py), run it, and enter two numbers
on the same line. To indicate the end of input, press ctrl-d/ctrl-
z. (The first line in the code above tells the grading system to use
Python3 rather Python2.)

Your goal is to implement an algorithm that produces a correct result
under the given time and memory limits for any input satisfying the given
constraints. You do not need to check that the input data satisfies the
constraints, e.g., for the Sum of Two Digits Problem you do not need to
check that the given integers a and b are indeed single digit integers (this
is guaranteed).

5

1.2 Submitting to the Grading System at edX

This is what a fresh submission page looks like:

To submit a solution, you need to put a source file (rather than an exe-
cutable) into the work folder and then press the Submit button. The grader
will then compile your program and run it against a bunch of test cases.
The grading report will appear under the Details tab.

There are basically two ways of implementing a solution:

On your machine. Implement a solution on your machine using your fa-
vorite IDE or text editor. Test it intensively. Then upload it using
the “Upload” button (in the top left corner) and submit. If you
are using C++, Java, or Python3, we strongly recommend to use
the starter solutions provided by us. They can be downloaded us-
ing either the download icon above the Files area or through the
Actions→Download startercode menu item (top right corner).

In the browser. If you are comfortable working from a terminal, you may
also implement a solution, test it, and submit it just at the submis-
sion page. For example, to submit the Python3 solution to the Sum
of Two Digits problem, do the following:

6

• To copy the starter solution to the work folder, in Files area,
select the starter solution from work/starter files and click
Copy. Then, select the work folder and click Paste. Alterna-
tively, in the terminal window, type

cp starter_files/APlusB.py .

• To edit this file, either click on it in the Files area (at the left)
and then edit it the Source area, or invoke a terminal text editor
through the terminal.

• To test it, type

python3 APlusB.py <<< "3 5"

and ensure that 8 is printed. For the Sum of Two Digits prob-
lem, such a simple test is enough. However for all other pro-
gramming challenges many more tests are required before sub-
mitting (see below).

To submit the solution, click on Submit and then click Yes in the dialog
asking if you are sure you want to submit. The details menu will show the
progress (“waiting for report”). When it is complete, you can click on that
item in the details menu to see the result of the grader.

7

2 Maximum Pairwise Product

Maximum Pairwise Product Problem
Find the maximum product of two distinct num-
bers in a sequence of non-negative integers.

Input: A sequence of non-negative
integers.
Output: The maximum value that
can be obtained by multiplying
two different elements from the se-
quence.

5 6 2 7 4
5 30 10 35 20
6 30 12 42 24
2 10 12 7 4
7 35 42 14 28
4 20 24 8 28

Given a sequence of non-negative integers a1, . . . , an, compute

max
1≤i,j≤n

ai · aj .

Note that i and j should be different, though it may be the case that ai = aj .

Input format. The first line contains an integer n. The next line contains
n non-negative integers a1, . . . , an (separated by spaces).

Output format. The maximum pairwise product.

Constraints. 2 ≤ n ≤ 2 · 105; 0 ≤ a1, . . . , an ≤ 2 · 105.

Sample 1.
Input:
3

1 2 3

Output:
6

8

Sample 2.
Input:
10

7 5 14 2 8 8 10 1 2 3

Output:
140

Time and memory limits. The same as for the previous problem.

2.1 Naive Algorithm

A naive way to solve the Maximum Pairwise Product Problem is to go
through all possible pairs of the input elements A[1 . . .n] = [a1, . . . , an] and
to find a pair of distinct elements with the largest product:

MaxPairwiseProductNaive(A[1 . . .n]):
product← 0
for i from 1 to n:

for j from 1 to n:
if i , j:

if product < A[i] ·A[j]:
product← A[i] ·A[j]

return product

This code can be optimized and made more compact as follows.

MaxPairwiseProductNaive(A[1 . . .n]):
product← 0
for i from 1 to n:

for j from i + 1 to n:
product←max(product,A[i] ·A[j])

return product

Implement this algorithm in your favorite programming language. If
you are using C++, Java, or Python3, you may want to download the starter
files (we provide starter solutions in these three languages for all the prob-
lems in the book). For other languages, you need to implement your solu-
tion from scratch.

9

Starter solutions for C++, Java, and Python3 are shown below.
C++

#include <iostream>

#include <vector>

using std::vector;

using std::cin;

using std::cout;

using std::max;

int MaxPairwiseProduct(const vector<int>& numbers) {

int product = 0;

int n = numbers.size();

for (int i = 0; i < n; ++i) {

for (int j = i + 1; j < n; ++j) {

product = max(product, numbers[i] * numbers[j]);

}

}

return product;

}

int main() {

int n;

cin >> n;

vector<int> numbers(n);

for (int i = 0; i < n; ++i) {

cin >> numbers[i];

}

int product = MaxPairwiseProduct(numbers);

cout << product << "\n";

return 0;

}

Java

import java.util.*;

import java.io.*;

10

public class MaxPairwiseProduct {

static int getMaxPairwiseProduct(int[] numbers) {

int product = 0;

int n = numbers.length;

for (int i = 0; i < n; ++i) {

for (int j = i + 1; j < n; ++j) {

product = Math.max(product,

numbers[i] * numbers[j]);

}

}

return product;

}

public static void main(String[] args) {

FastScanner scanner = new FastScanner(System.in);

int n = scanner.nextInt();

int[] numbers = new int[n];

for (int i = 0; i < n; i++) {

numbers[i] = scanner.nextInt();

}

System.out.println(getMaxPairwiseProduct(numbers));

}

static class FastScanner {

BufferedReader br;

StringTokenizer st;

FastScanner(InputStream stream) {

try {

br = new BufferedReader(new

InputStreamReader(stream));

} catch (Exception e) {

e.printStackTrace();

}

}

String next() {

while (st == null || !st.hasMoreTokens()) {

try {

11

st = new StringTokenizer(br.readLine());

} catch (IOException e) {

e.printStackTrace();

}

}

return st.nextToken();

}

int nextInt() {

return Integer.parseInt(next());

}

}

}

Python

Uses python3

n = int(input())

a = [int(x) for x in input().split()]

product = 0

for i in range(n):

for j in range(i + 1, n):

product = max(product, a[i] * a[j])

print(product)

After submitting this solution to the grading system, many students
are surprised when they see the following message:

Failed case #4/17: time limit exceeded

After you submit your program, we test it on dozens of carefully de-
signed test cases to make sure the program is fast and error proof. As the
result, we usually know what kind of errors you made. The message above
tells that the submitted program exceeds the time limit on the 4th out of
17 test cases.

Stop and Think. Why does the solution not fit into the time limit?

12

MaxPairwiseProductNaive performs of the order of n2 steps on a se-
quence of length n. For the maximal possible value n = 2 · 105, the
number of steps is of the order 4 · 1010. Since many modern com-
puters perform roughly 108–109 basic operations per second (this de-
pends on a machine, of course), it may take tens of seconds to execute
MaxPairwiseProductNaive, exceeding the time limit for the Maximum
Pairwise Product Problem.

We need a faster algorithm!

2.2 Fast Algorithm

In search of a faster algorithm, you play with small examples like
[5,6,2,7,4]. Eureka—it suffices to multiply the two largest elements of
the array—7 and 6!

Since we need to find the largest and the second largest elements, we
need only two scans of the sequence. During the first scan, we find the
largest element. During the second scan, we find the largest element
among the remaining ones by skipping the element found at the previ-
ous scan.

MaxPairwiseProductFast(A[1 . . .n]):
index1← 1
for i from 2 to n:

if A[i] > A[index1]:
index1← i

index2← 1
for i from 2 to n:

if A[i] , A[index1] and A[i] > A[index2]:
index2← i

return A[index1] ·A[index2]

2.3 Testing and Debugging

Implement this algorithm and test it using an input A = [1,2]. It will
output 2, as expected. Then, check the input A = [2,1]. Surprisingly, it
outputs 4. By inspecting the code, you find out that after the first loop,
index1 = 1. The algorithm then initializes index2 to 1 and index2 is never

13

updated by the second for loop. As a result, index1 = index2 before the
return statement. To ensure that this does not happen, you modify the
pseudocode as follows:

MaxPairwiseProductFast(A[1 . . .n]):
index1← 1
for i from 2 to n:

if A[i] > A[index1]:
index1← i

if index1 = 1:
index2← 2

else:
index2← 1

for i from 1 to n:
if A[i] , A[index1] and A[i] > A[index2]:

index2← i

return A[index1] ·A[index2]

Check this code on a small datasets [7,4,5,6] to ensure that it produces
correct results. Then try an input

2

100000 90000

You may find out that the program outputs something like 410065408 or
even a negative number instead of the correct result 9000000000. If it
does, this is most probably caused by an integer overflow. For example, in
C++ programming language a large number like 9000000000 does not fit
into the standard int type that on most modern machines occupies 4 bytes
and ranges from −231 to 231 − 1, where

231 = 2147483648 .

Hence, instead of using the C++ int type you need to use the int64 t type
when computing the product and storing the result. This will prevent
integer overflow as the int64 t type occupies 8 bytes and ranges from
−263 to 263 − 1, where

263 = 9223372036854775808 .

14

You then proceed to testing your program on large data sets, e.g., an
array A[1 . . .2 ·105], where A[i] = i for all 1 ≤ i ≤ 2 ·105. There are two ways
of doing this.

1. Create this array in your program and pass it to
MaxPairwiseProductFast (instead of reading it from the stan-
dard input).

2. Create a separate program, that writes such an array to a file
dataset.txt. Then pass this dataset to your program from console
as follows:

yourprogram < dataset.txt

Check that your program processes this dataset within time limit and re-
turns the correct result: 39999800000. You are now confident that the
program finally works!

However, after submitting it to the testing system, it fails again...

Failed case #5/17: wrong answer

But how would you generate a test case that make your program fail and
help you to figure out what went wrong?

2.4 Can You Tell Me What Error Have I Made?

You are probably wondering why we did not provide you with the 5th out
of 17 test datasets that brought down your program. The reason is that
nobody will provide you with the test cases in real life!

Since even experienced programmers often make subtle mistakes solv-
ing algorithmic problems, it is important to learn how to catch bugs as
early as possible. When the authors of this book started to program, they
naively thought that nearly all their programs are correct. By now, we
know that our programs are almost never correct when we first run them.

When you are confident that your program works, you often test it on
just a few test cases, and if the answers look reasonable, you consider your
work done. However, this is a recipe for a disaster. To make your program
always work, you should test it on a set of carefully designed test cases.
Learning how to implement algorithms as well as test and debug your
programs will be invaluable in your future work as a programmer.

15

2.5 Stress Testing

We will now introduce stress testing—a technique for generating thou-
sands of tests with the goal of finding a test case for which your solution
fails.

A stress test consists of four parts:

1. Your implementation of an algorithm.

2. An alternative, trivial and slow, but correct implementation of an
algorithm for the same problem.

3. A random test generator.

4. An infinite loop in which a new test is generated and fed into both
implementations to compare the results. If their results differ, the
test and both answers are output, and the program stops, otherwise
the loop repeats.

The idea behind stress testing is that two correct implementations
should give the same answer for each test (provided the answer to the
problem is unique). If, however, one of the implementations is incorrect,
then there exists a test on which their answers differ. The only case when
it is not so is when there is the same mistake in both implementations,
but that is unlikely (unless the mistake is somewhere in the input/output
routines which are common to both solutions). Indeed, if one solution is
correct and the other is wrong, then there exists a test case on which they
differ. If both are wrong, but the bugs are different, then most likely there
exists a test on which two solutions give different results.

Here is the the stress test for MaxPairwiseProductFast using
MaxPairwiseProductNaive as a trivial implementation:

16

StressTest(N,M):
while true:

n← random integer between 2 and N
allocate array A[1 . . .n]
for i from 1 to n:

A[i]← random integer between 0 and M
print(A[1 . . .n])
result1←MaxPairwiseProductNaive(A)
result2←MaxPairwiseProductFast(A)
if result1 = result2:

print(“OK”)
else:

print(“Wrong answer: ”, result1, result2)
return

The while loop above starts with generating the length of the input
sequence n, a random number between 2 and N . It is at least 2, because
the problem statement specifies that n ≥ 2. The parameter N should be
small enough to allow us to explore many tests despite the fact that one of
our solutions is slow.

After generating n, we generate an array A with n random numbers
from 0 to M and output it so that in the process of the infinite loop we
always know what is the current test; this will make it easier to catch an
error in the test generation code. We then call two algorithms on A and
compare the results. If the results are different, we print them and halt.
Otherwise, we continue the while loop.

Let’s run StressTest(10,100000) and keep our fingers crossed in
a hope that it outputs “Wrong answer.” We see something like this (the
result can be different on your computer because of a different random
number generator).

...
OK
67232 68874 69499
OK
6132 56210 45236 95361 68380 16906 80495 95298
OK
62180 1856 89047 14251 8362 34171 93584 87362 83341 8784
OK

17

21468 16859 82178 70496 82939 44491
OK
68165 87637 74297 2904 32873 86010 87637 66131 82858 82935
Wrong answer: 7680243769 7537658370

Hurrah! We’ve found a test case where MaxPairwiseProductNaive

and MaxPairwiseProductFast produce different results, so now we can
check what went wrong. Then we can debug this solution on this test
case, find a bug, fix it, and repeat the stress test again.

Stop and Think. Do you see anything suspicious in the found dataset?

Note that generating tests automatically and running stress test is easy,
but debugging is hard. Before diving into debugging, let’s try to generate
a smaller test case to simplify it. To do that, we change N from 10 to 5
and M from 100000 to 9.

Stop and Think. Why did we first run StressTest with large parame-
ters N and M and now intend to run it with small N and M?

We then run the stress test again and it produces the following.

...
7 3 6
OK
2 9 3 1 9
Wrong answer: 81 27

The slow MaxPairwiseProductNaive gives the correct answer 81 (9 · 9 =
81), but the fast MaxPairwiseProductFast gives an incorrect answer 27.

Stop and Think. How MaxPairwiseProductFast can possibly return 27?

To debug our fast solution, let’s check which two numbers it identifies
as two largest ones. For this, we add the following line before the return

statement of the MaxPairwiseProductFast function:

print(index1, index2)

After running the stress test again, we see the following.

...
7 3 6
1 3

18

OK
5
2 9 3 1 9
2 3
Wrong answer: 81 27

Note that our solutions worked and then failed on exactly the same
test cases as on the previous run of the stress test, because we didn’t
change anything in the test generator. The numbers it uses to generate
tests are pseudorandom rather than random—it means that the sequence
looks random, but it is the same each time we run this program. It is
a convenient and important property, and you should try to have your
programs exhibit such behavior, because deterministic programs (that al-
ways give the same result for the same input) are easier to debug than
non-deterministic ones.

Now let’s examine index1 = 2 and index2 = 3. If we look at the code for
determining the second maximum, we will notice a subtle bug. When we
implemented a condition on i (such that it is not the same as the previ-
ous maximum) instead of comparing i and index1, we compared A[i] with
A[index1]. This ensures that the second maximum differs from the first
maximum by the value rather than by the index of the element that we
select for solving the Maximum Pairwise Product Problem. So, our solu-
tion fails on any test case where the largest number is equal to the second
largest number. We now change the condition from

A[i] , A[index1]

to

i , index1

After running the stress test again, we see a barrage of “OK” messages
on the screen. We wait for a minute until we get bored and then decide
that MaxPairwiseProductFast is finally correct!

However, you shouldn’t stop here, since you have only generated very
small tests with N = 5 and M = 10. We should check whether our pro-
gram works for larger n and larger elements of the array. So, we change
N to 1000 (for larger N , the naive solution will be pretty slow, because
its running time is quadratic). We also change M to 200000 and run. We
again see the screen filling with words “OK”, wait for a minute, and then

19

decide that (finally!) MaxPairwiseProductFast is correct. Afterwards, we
submit the resulting solution to the grading system and pass the Maxi-
mum Pairwise Product Problem test!

As you see, even for such a simple problems like Maximum Pairwise
Product, it is easy to make subtle mistakes when designing and imple-
menting an algorithm. The pseudocode below presents a more “reliable”
way of implementing the algorithm.

MaxPairwiseProductFast(A[1 . . .n]):
index← 1
for i from 2 to n:

if A[i] > A[index]:
index← i

swap A[index] and A[n]
index← 1
for i from 2 to n− 1:

if A[i] > A[index]:
index← i

swap A[index] and A[n− 1]
return A[n− 1] ·A[n]

In this book, besides learning how to design and analyze algorithms,
you will learn how to implement algorithms in a way that minimizes the
chances of making a mistake, and how to test your implementations.

2.6 Even Faster Algorithm

The MaxPairwiseProductFast algorithm finds the largest and the second
largest elements in about 2n comparisons.

Exercise Break. Find two largest elements in an array in 1.5n compar-
isons.

After solving this problem, try the next, even more challenging Exer-
cise Break.

Exercise Break. Find two largest elements in an array in n + dlog2ne − 2
comparisons.

20

And if you feel that the previous Exercise Break was easy, here are the
next two challenges that you may face at your next interview!

Exercise Break. Prove that no algorithm for finding two largest elements
in an array can do this in less than n+ dlog2ne − 2 comparisons.

Exercise Break. What is the fastest algorithm for finding three largest
elements?

2.7 A More Compact Algorithm

The Maximum Pairwise Product Problem can be solved by the following
compact algorithm that uses sorting (in non-decreasing order).

MaxPairwiseProductBySorting(A[1 . . .n]):
Sort(A)
return A[n− 1] ·A[n]

This algorithm does more than we actually need: instead of finding two
largest elements, it sorts the entire array. For this reason, its running time
is O(n logn), but not O(n). Still, for the given constraints (2 ≤ n ≤ 2 · 105)
this is usually sufficiently fast to fit into a second and pass our grader.

3 Solving a Programming Challenge in Five
Easy Steps

Below we summarize what we’ve learned in this chapter.

3.1 Reading Problem Statement

Start by reading the problem statement that contains the description of
a computational task, time and memory limits, and a few sample tests.
Make sure you understand how an output matches an input in each sam-
ple case.

If time and memory limits are not specified explicitly in the problem
statement, the following default values are used.

21

Time limits (sec.):

C C++ Java Python Haskell JavaScript Scala

1 1 1.5 5 2 5 3

Memory limit: 512 Mb.

3.2 Designing an Algorithm

After designing an algorithm, prove that it is correct and try to estimate
its expected running time on the most complex inputs specified in the
constraints section. If you laptop performs roughly 108–109 operations
per second, and the maximum size of a dataset in the problem description
is n = 105, then an algorithm with quadratic running time is unlikely to
fit into the time limit (since n2 = 1010), while a solution with running time
O(n logn) will. However, an O(n2) solution will fit if n = 1000, and if
n = 100, even an O(n3) solutions will fit. Although polynomial algorithms
remain unknown for some hard problems in this book, a solution with
O(2nn2) running time will probably fit into the time limit as long as n is
smaller than 20.

3.3 Implementing an Algorithm

Start implementing your algorithm in one of the following programming
languages supported by our automated grading system: C, C++, Haskell,
Java, JavaScript, Python2, Python3, or Scala. For all problems, we pro-
vide starter solutions for C++, Java, and Python3. For other programming
languages, you need to implement a solution from scratch. The grading
system detects the programming language of your submission automati-
cally, based on the extension of the submission file.

We have reference solutions in C++, Java, and Python3 (that we don’t
share with you) which solve the problem correctly under the given con-
straints, and spend at most 1/3 of the time limit and at most 1/2 of the
memory limit. You can also use other languages, and we’ve estimated the
time limit multipliers for them. However, we have no guarantee that a cor-
rect solution for a particular problem running under the given time and
memory constraints exists in any of those other languages.

22

In the Appendix, we list compiler versions and flags used by the grad-
ing system. We recommend using the same compiler flags when you test
your solution locally. This will increase the chances that your program be-
haves in the same way on your machine and on the testing machine (note
that a buggy program may behave differently when compiled by different
compilers, or even by the same compiler with different flags).

3.4 Testing and Debugging

Submitting your implementation to the grading system without testing
it first is a bad idea! Start with small datasets and make sure that your
program produces correct results on all sample datasets. Then proceed
to checking how long it takes to process a large dataset. To estimate the
running time, it makes sense to implement your algorithm as a function
like solve(dataset) and then implement an additional procedure gener-
ate() that produces a large dataset. For example, if an input to a problem
is a sequence of integers of length 1 ≤ n ≤ 105, then generate a sequence of
length 105, pass it to your solve() function, and ensure that the program
outputs the result quickly.

Check the boundary values to ensure that your program processes cor-
rectly both short sequences (e.g., with 2 elements) and long sequences
(e.g., with 105 elements). If a sequence of integers from 0 to, let’s say, 106

is given as an input, check how your program behaves when it is given
a sequence 0,0, . . . ,0 or a sequence 106,106, . . . ,106. Afterwards, check it
also on randomly generated data. Check degenerate cases like an empty
set, three points on a single line, a tree which consists of a single path of
nodes, etc.

After it appears that your program works on all these tests, proceed
to stress testing. Implement a slow, but simple and correct algorithm and
check that two programs produce the same result (note however that this
is not applicable to problems where the output is not unique). Generate
random test cases as well as biased tests cases such as those with only
small numbers or a small range of large numbers, strings containing a sin-
gle letter “a” or only two different letters (as opposed to strings composed
of all possible Latin letters), and so on. Think about other possible tests
which could be peculiar in some sense. For example, if you are generating
graphs, try generating trees, disconnected graphs, complete graphs, bipar-
tite graphs, etc. If you generate trees, try generating paths, binary trees,

23

stars, etc. If you are generating integers, try generating both prime and
composite numbers.

3.5 Submitting to the Grading System

When you are done with testing, submit your program to the grading sys-
tem! Go to the submission page, create a new submission, and upload a file
with your program (make sure to upload a source file rather than an exe-
cutable). The grading system then compiles your program and runs it on
a set of carefully constructed tests to check that it outputs a correct result
for all tests and that it fits into the time and memory limits. The grading
usually takes less than a minute, but in rare cases, when the servers are
overloaded, it might take longer. Please be patient. You can safely leave
the page when your solution is uploaded.

As a result, you get a feedback message from the grading system. You
want to see the “Good job!” message indicating that your program passed
all the tests. The messages “Wrong answer”, “Time limit exceeded”,
“Memory limit exceeded” notify you that your program failed due to one
of these reasons. If you program fails on one of the first two test cases, the
grader will report this to you and will show you the test case and the out-
put of your program. This is done to help you to get the input/output
format right. In all other cases, the grader will not show you the test case
where your program fails.

4 Appendix: Compiler Flags

C (gcc 5.2.1). File extensions: .c. Flags:

gcc -pipe -O2 -std=c11 <filename> -lm

C++ (g++ 5.2.1). File extensions: .cc, .cpp. Flags:

g++ -pipe -O2 -std=c++14 <filename> -lm

If your C/C++ compiler does not recognize -std=c++14 flag, try re-
placing it with -std=c++0x flag or compiling without this flag at all
(all starter solutions can be compiled without it). On Linux and Ma-
cOS, you most probably have the required compiler. On Windows,
you may use your favorite compiler or install, e.g., cygwin.

24

Java (Open JDK 8). File extensions: .java. Flags:

javac -encoding UTF-8

java -Xmx1024m

JavaScript (Node v6.3.0). File extensions: .js. Flags:

nodejs

Python 2 (CPython 2.7). File extensions: .py2 or .py (a file ending in .py

needs to have a first line which is a comment containing “python2”).
No flags:

python2

Python 3 (CPython 3.4). File extensions: .py3 or .py (a file ending in .py

needs to have a first line which is a comment containing “python3”).
No flags:

python3

Scala (Scala 2.11.6). File extensions: .scala.

scalac

25

	Sum of Two Digits
	Implementing an Algorithm
	Submitting to the Grading System at edX

	Maximum Pairwise Product
	Naive Algorithm
	Fast Algorithm
	Testing and Debugging
	Can You Tell Me What Error Have I Made?
	Stress Testing
	Even Faster Algorithm
	A More Compact Algorithm

	Solving a Programming Challenge in Five Easy Steps
	Reading Problem Statement
	Designing an Algorithm
	Implementing an Algorithm
	Testing and Debugging
	Submitting to the Grading System

	Appendix: Compiler Flags

