Introduction: Fibonacci Numbers I

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

Understand the definition of the Fibonacci numbers.
Show that Fibonacci numbers become very large.

Definition

$$F_n = \begin{cases} 0, & n = 0, \\ 1, & n = 1, \\ F_{n-1} + F_{n-2}, & n > 1. \end{cases}$$

Definition

$$F_n = \begin{cases} 0, & n = 0, \\ 1, & n = 1, \\ F_{n-1} + F_{n-2}, & n > 1. \end{cases}$$

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$$

Developed to Study Rabbit Populations

Lemma

$$F_n \geq 2^{n/2}$$
 for $n \geq 6$.

Lemma

$$F_n \geq 2^{n/2}$$
 for $n \geq 6$.

Proof

By induction

Lemma

$$F_n \geq 2^{n/2}$$
 for $n \geq 6$.

Proof

By induction Base case: n = 6,7 (by direct computation).

Lemma

$$F_n \geq 2^{n/2}$$
 for $n \geq 6$.

Proof

By induction Base case: n = 6,7 (by direct computation). Inductive step:

$$F_n = F_{n-1} + F_{n-2} \ge 2^{(n-1)/2} + 2^{(n-2)/2} \ge 2 \cdot 2^{(n-2)/2} = 2^{n/2}.$$

Formula

$F_{20} = 6765$

$F_{20} = 6765$ $F_{50} = 12586269025$

Example

- $F_{20} = 6765$
- $F_{50} = 12586269025$
- $F_{100} = 354224848179261915075$

Example

- $F_{20} = 6765$
- $F_{50} = 12586269025$
- $F_{100} = 354224848179261915075$
- $F_{500} = 1394232245616978801397243828$ 7040728395007025658769730726 4108962948325571622863290691 557658876222521294125

Computing Fibonacci numbers

Compute
$$F_n$$

Input: An integer $n \ge 0$. Output: F_n .