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Learning Objectives

Compute Fibonacci numbers efficiently.




Definition

0, n=20,
n:

an—l + Fn—27 n>1.




Algorithm

FibRecurs(n)

if n<1:
return n
else:

return FibRecurs(n — 1)+ FibRecurs(n — 2)

Too slow!



Another Algorithm

Imitate hand computation:
0,1



Another Algorithm

Imitate hand computation:
0,1,1

O+1=1



Another Algorithm

Imitate hand computation:
0,1, 1,2

O+1=1
1+1=2



Another Algorithm

Imitate hand computation:

0,1, 1,23
O+1=1
1+1=2

1+2=3



Another Algorithm

Imitate hand computation:

0,1, 1,2 3,5
O+1=1
1+1=2
1+2=3

2+3=5



Another Algorithm

Imitate hand computation:

0,1, 1,2 3,58
O+1=1
1+1=2
1+2=3
2+3=5

3+5=38



New Algorithm
FibList(n)

create an array F[0...n]
F[0] < 0
F[1] <1
for / from 2 to n:
Fli] < F[i — 1]+ F[i — 2]

return F|[n]
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m 7T(n)=2n+2. So T(100) = 202.
m Easy to compute.



Summary

Introduced Fibonacci numbers.

Naive algorithm takes ridiculously long
time on small examples.

Improved algorithm incredibly fast.




Summary

Introduced Fibonacci numbers.

Naive algorithm takes ridiculously long
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Moral: The right algorithm makes
all the difference.



