Introduction:
Fibonacci Numbers Ill

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Algorithmic Design and Techniques
Algorithms and Data Structures at edX


http://bit.ly/algoedx1
https://www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures

Learning Objectives

Compute Fibonacci numbers efficiently.




Definition

0, n=20,
n:

an—l + Fn—27 n>1.




Algorithm

FibRecurs(n)

if n<1:
return n
else:

return FibRecurs(n — 1)+ FibRecurs(n — 2)

Too slow!



Another Algorithm

Imitate hand computation:
0,1



Another Algorithm

Imitate hand computation:
0,1,1

O+1=1



Another Algorithm

Imitate hand computation:
0,1, 1,2

O+1=1
1+1=2



Another Algorithm

Imitate hand computation:

0,1, 1,23
O+1=1
1+1=2

1+2=3



Another Algorithm

Imitate hand computation:

0,1, 1,2 3,5
O+1=1
1+1=2
1+2=3

2+3=5



Another Algorithm

Imitate hand computation:

0,1, 1,2 3,58
O+1=1
1+1=2
1+2=3
2+3=5

3+5=38



New Algorithm
FibList(n)

create an array F[0...n]
F[0] < 0
F[1] <1
for / from 2 to n:
Fli] < F[i — 1]+ F[i — 2]

return F|[n]



New Algorithm
FibList(n)

create an array F[0...n]
F[0] < 0
F[1] <1
for / from 2 to n:
Fli] < F[i — 1]+ F[i — 2]

return F|[n]

m 7T(n)=2n+2. So T(100) = 202.
m Easy to compute.



Summary

Introduced Fibonacci numbers.

Naive algorithm takes ridiculously long
time on small examples.

Improved algorithm incredibly fast.




Summary

Introduced Fibonacci numbers.

Naive algorithm takes ridiculously long
time on small examples.

Improved algorithm incredibly fast.

Moral: The right algorithm makes
all the difference.



