Introduction: Greatest Common Divisors I

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

Define greatest common divisors.
Compute greatest common divisors inefficiently.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a/d}{b/d}$.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a/d}{b/d}$.
 - Need *d* to divide *a* and *b*.
 - Want *d* to be as large as possible.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a/d}{b/d}$.
 - Need *d* to divide *a* and *b*.
 - Want *d* to be as large as possible.

Definition

For integers, a and b, their greatest common divisor or gcd(a, b) is the largest integer d so that d divides both a and b.

Number Theory

Cryptography

Computation

Compute GCD

Input: Integers $a, b \ge 0$. Output: gcd(a, b).

Computation

Compute GCD

Input: Integers $a, b \ge 0$. Output: gcd(a, b).

Run on large numbers like

gcd(3918848, 1653264).

Naive Algorithm

Function NaiveGCD(a, b)

 $best \leftarrow 0$ for d from 1 to a + b: if d|a and d|b: $best \leftarrow d$ return best

Naive Algorithm

Function NaiveGCD(a, b)

 $best \leftarrow 0$ for d from 1 to a + b: if d|a and d|b: $best \leftarrow d$ return best

Runtime approximately *a* + *b*.
Very slow for 20 digit numbers.