Introduction:

 Greatest Common

 Greatest Common Divisors I

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

- Define greatest common divisors.
- Compute greatest common divisors inefficiently.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a / d}{b / d}$.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a / d}{b / d}$.
- Need d to divide a and b.
- Want d to be as large as possible.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a / d}{b / d}$.
- Need d to divide a and b.
- Want d to be as large as possible.

Definition

For integers, a and b, their greatest common divisor or $\operatorname{gcd}(a, b)$ is the largest integer d so that d divides both a and b.

Number Theory

Cryptography

Computation

Compute GCD

Input: Integers $a, b \geq 0$.
Output: $\operatorname{gcd}(a, b)$.

Computation

Compute GCD

Input: Integers $a, b \geq 0$.
Output: $\operatorname{gcd}(a, b)$.
Run on large numbers like $\operatorname{gcd}(3918848,1653264)$.

Naive Algorithm

Function NaiveGCD (a, b)

best $\leftarrow 0$
for d from 1 to $a+b$: if $d \mid a$ and $d \mid b$: best $\leftarrow d$
return best

Naive Algorithm

Function NaiveGCD (a, b)

best $\leftarrow 0$
for d from 1 to $a+b$:
if $d \mid a$ and $d \mid b$:
best $\leftarrow d$
return best
■ Runtime approximately $a+b$.

- Very slow for 20 digit numbers.

