Introduction:

 Greatest Common

 Greatest Common Divisors II

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

Implement the Euclidean Algorithm.
Approximate the runtime.

GCDs

Definition

For integers, a and b, their greatest common divisor or $\operatorname{gcd}(a, b)$ is the largest integer d so that d divides both a and b.

GCDs

Definition

For integers, a and b, their greatest common divisor or $\operatorname{gcd}(a, b)$ is the largest integer d so that d divides both a and b.

Compute GCD

Input: Integers $a, b \geq 0$.
Output: $\operatorname{gcd}(a, b)$.

Key Lemma

Lemma

Let a^{\prime} be the remainder when a is divided by b, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a^{\prime}, b\right)=\operatorname{gcd}\left(b, a^{\prime}\right) .
$$

Proof

Proof (sketch)

- $a=a^{\prime}+b q$ for some q
- d divides a and b if and only if it divides a^{\prime} and b

Euclidean Algorithm

Function EuclidGCD (a, b)

if $b=0$:
return a
$a^{\prime} \leftarrow$ the remainder when a is
divided by b
return EuclidGCD $\left(b, a^{\prime}\right)$

Euclidean Algorithm

Function EuclidGCD (a, b)

if $b=0$:
return a
$a^{\prime} \leftarrow$ the remainder when a is
divided by b
return EuclidGCD $\left(b, a^{\prime}\right)$
Produces correct result by Lemma.

Example

$\operatorname{gcd}(3918848,1653264)$

Example

$$
\begin{aligned}
& \operatorname{gcd}(3918848,1653264) \\
= & \operatorname{gcd}(1653264,612320)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{gcd}(3918848,1653264) \\
= & \operatorname{gcd}(1653264,612320) \\
= & \operatorname{gcd}(612320,428624)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{gcd}(3918848,1653264) \\
= & \operatorname{gcd}(1653264,612320) \\
= & \operatorname{gcd}(612320,428624) \\
= & \operatorname{gcd}(428624,183696)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{gcd}(3918848,1653264) \\
= & \operatorname{gcd}(1653264,612320) \\
= & \operatorname{gcd}(612320,428624) \\
= & \operatorname{gcd}(428624,183696) \\
= & \operatorname{gcd}(183696,61232)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{gcd}(3918848,1653264) \\
= & \operatorname{gcd}(1653264,612320) \\
= & \operatorname{gcd}(612320,428624) \\
= & \operatorname{gcd}(428624,183696) \\
= & \operatorname{gcd}(183696,61232) \\
= & \operatorname{gcd}(61232,0)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{gcd}(3918848,1653264) \\
= & \operatorname{gcd}(1653264,612320) \\
= & \operatorname{gcd}(612320,428624) \\
= & \operatorname{gcd}(428624,183696) \\
= & \operatorname{gcd}(183696,61232) \\
= & \operatorname{gcd}(61232,0) \\
= & 61232 .
\end{aligned}
$$

Runtime

- Each step reduces the size of numbers by about a factor of 2 .
- Takes about $\log (a b)$ steps.

Runtime

- Each step reduces the size of numbers by about a factor of 2 .
- Takes about $\log (a b)$ steps.
- GCDs of 100 digit numbers takes about 600 steps.
■ Each step a single division.

Summary

- Naive algorithm is too slow.
- The correct algorithm is much better.
- Finding the correct algorithm requires knowing something interesting about the problem.

