Introduction: Computing Runtimes

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

Describe some of the issues involved with computing the runtime of an actual program.
Understand why finding exact runtimes is a problem.

2 Other Things to Consider

Runtime Analysis Function FibList(n) create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for *i* from 2 to *n*: $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

Runtime Analysis Function FibList(n) create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for *i* from 2 to *n*: $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

2n + 2 lines of code. Does this really describe the runtime of the algorithm?

```
Function FibList(n)
create an array F[0...n]
F[0] \leftarrow 0
F[1] \leftarrow 1
for i from 2 to n:
  F[i] \leftarrow F[i-1] + F[i-2]
return F[n]
```

Depends on memory management system.

```
Function FibList(n)
```

```
create an array F[0...n]

F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

Assignment.

```
Function FibList(n)
```

```
create an array F[0...n]

F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

Assignment.

```
Function FibList(n)
```

```
create an array F[0...n]

F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

Increment, comparison, branch.

```
Function FibList(n)
```

```
create an array F[0...n]

F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

Lookup, assignment, addition of big integers.

```
Function FibList(n)
```

```
create an array F[0...n]

F[0] \leftarrow 0

F[1] \leftarrow 1

for i from 2 to n:

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

Lookup, return.

1 Revisit Fibonacci

2 Other Things to Consider

Computing Runtime

To figure out how long this simple program would actually take to run on a real computer, we would also need to know things like:

Speed of the Computer

The System Architecture

The Compiler Being Used

Details of the Memory Hierarchy

Problem

Figuring out accurate runtime is a huge mess

Problem

- Figuring out accurate runtime is a huge mess
- In practice, you might not even know some of these details

Want to:

Measure runtime without knowing these details.

• Get results that work for large inputs.