Introduction: Asymptotic Notation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

Understand the basic idea behind asymptotic runtimes.
Describe some of the advantages to using asymptotic runtimes.

Last Time

Computing Runtimes Hard

- Depends on fine details of program.
- Depends on details of computer.

All of these issues can multiply runtimes by (large) constant.

All of these issues can multiply runtimes by (large) constant. So measure runtime in a way that ignores constant multiples.

Problem

Unfortunately, 1 second, 1 hour, 1 year only differ by constant multiples.

Consider asymptotic runtimes. How does runtime scale with input size.

Approximate Runtimes

	п	n log n	n ²	2 ⁿ
<i>n</i> = 20	1 sec	1 sec	1 sec	1 sec
n = 50	1 sec	1 sec	1 sec	13 day
$n = 10^2$	1 sec	1 sec	1 sec	$4\cdot 10^{13}$ year
$n = 10^{6}$	1 sec	1 sec	17 min	
$n = 10^9$	1 sec	30 sec	30 year	
max <i>n</i>	10 ⁹	10 ^{7.5}	10 ^{4.5}	30

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec 2^n$

