Introduction:
Big-O Notation

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Algorithmic Design and Techniques
Algorithms and Data Structures at edX


http://bit.ly/algoedx1
https://www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures

Learning Objectives

Understand the meaning of Big-O
notation.

Describe some of the advantages and
disadvantages of using Big-O notation.




Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g)or f < g
if there exist constants N and ¢ so that for
alln >N, f(n) < c-g(n).



Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g)or f < g
if there exist constants N and ¢ so that for
alln >N, f(n) < c-g(n).

f is bounded above by some constant
multiple of g.



Big-O Notation

Example

3n% +5n+2 = O(n?) since if n > 1,
3n° +5n+2 < 3n? +5n% + 2n% = 10n°.



Growth Rate

3n? + 5n + 2 has the same growth rate as n?

3n245n42
T2

N WP OO N0 WO

12345678 91011121314151617181920



Using Big-O

We will use Big-O notation to report
algorithm runtimes. This has several
advantages.



Clarifies Growth Rate

25000 |-
20000 |-
15000 |-
10000 |-

5000 -




Cleans up Notation

m O(n?) vs. 3n° +5n+ 2.
m O(n) vs. n+ logy(n) + sin(n).



Cleans up Notation

n*) vs. 3n*> +5n+ 2.

n) vs. n+ log,(n) + sin(n).
(nlog(n)) vs. 4nlog,(n) + 7.

m Note: log,(n),logs(n), log,(n) differ by
constant multiples, don't need to specify
which.



Cleans up Notation

O(n?) vs. 3n* +5n+ 2.

(
(n) vs. n+ logy(n) + sin(n).

(nlog(n)) vs. 4nlog,(n) + 7.

m Note: log,(n),logs(n), log,(n) differ by
constant multiples, don't need to specify
which.

o
o

Makes algebra easier.



Can Ignore Complicated Details

No longer need to worry about:

Control
Unit

Registers
001001001 reE Processor
ibLi L2 Cache More slorage
FibList 010011100 S e
100101100
I:l 101101011 m Memory

Page File Hard Disk v



Warning

m Using Big-O loses important information
about constant multiples.

m Big-O is only asymptotic.



