Introduction: Big-O Notation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

- Understand the meaning of Big-O notation.
- Describe some of the advantages and disadvantages of using Big-O notation.

Big-O Notation

Definition

$f(n)=O(g(n))(f$ is Big-O of $g)$ or $f \preceq g$ if there exist constants N and c so that for all $n \geq N, f(n) \leq c \cdot g(n)$.

Big-O Notation

Definition

$f(n)=O(g(n))(f$ is Big-O of $g)$ or $f \preceq g$ if there exist constants N and c so that for all $n \geq N, f(n) \leq c \cdot g(n)$.
f is bounded above by some constant multiple of g.

Big-O Notation

Example

$3 n^{2}+5 n+2=O\left(n^{2}\right)$ since if $n \geq 1$, $3 n^{2}+5 n+2 \leq 3 n^{2}+5 n^{2}+2 n^{2}=10 n^{2}$.

Growth Rate

$3 n^{2}+5 n+2$ has the same growth rate as n^{2}

Using Big-O

We will use Big-O notation to report algorithm runtimes. This has several advantages.

Clarifies Growth Rate

Cleans up Notation

- $O\left(n^{2}\right)$ vs. $3 n^{2}+5 n+2$.
- $O(n)$ vs. $n+\log _{2}(n)+\sin (n)$.

Cleans up Notation

- $O\left(n^{2}\right)$ vs. $3 n^{2}+5 n+2$.
- $O(n)$ vs. $n+\log _{2}(n)+\sin (n)$.
- $O(n \log (n))$ vs. $4 n \log _{2}(n)+7$.
- Note: $\log _{2}(n), \log _{3}(n), \log _{x}(n)$ differ by constant multiples, don't need to specify which.

Cleans up Notation

- $O\left(n^{2}\right)$ vs. $3 n^{2}+5 n+2$.
- $O(n)$ vs. $n+\log _{2}(n)+\sin (n)$.

■ $O(n \log (n))$ vs. $4 n \log _{2}(n)+7$.

- Note: $\log _{2}(n), \log _{3}(n), \log _{x}(n)$ differ by constant multiples, don't need to specify which.

■ Makes algebra easier.

Can Ignore Complicated Details

No longer need to worry about:

Warning

- Using Big-O loses important information about constant multiples.
- Big- O is only asymptotic.

