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Learning Objectives

Understand the meaning of Big-O
notation.

Describe some of the advantages and
disadvantages of using Big-O notation.




Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g)or f < g
if there exist constants N and ¢ so that for
alln >N, f(n) < c-g(n).



Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g)or f < g
if there exist constants N and ¢ so that for
alln >N, f(n) < c-g(n).

f is bounded above by some constant
multiple of g.



Big-O Notation

Example

3n% +5n+2 = O(n?) since if n > 1,
3n° +5n+2 < 3n? +5n% + 2n% = 10n°.



Growth Rate

3n? + 5n + 2 has the same growth rate as n?
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Using Big-O

We will use Big-O notation to report
algorithm runtimes. This has several
advantages.



Clarifies Growth Rate
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Cleans up Notation

m O(n?) vs. 3n° +5n+ 2.
m O(n) vs. n+ logy(n) + sin(n).



Cleans up Notation

n*) vs. 3n*> +5n+ 2.

n) vs. n+ log,(n) + sin(n).
(nlog(n)) vs. 4nlog,(n) + 7.

m Note: log,(n),logs(n), log,(n) differ by
constant multiples, don't need to specify
which.



Cleans up Notation
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Makes algebra easier.



Can Ignore Complicated Details

No longer need to worry about:
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Warning

m Using Big-O loses important information
about constant multiples.

m Big-O is only asymptotic.



