Introduction: Big-0 Notation

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Learning Objectives

 Understand the meaning of Big-O notation.

 Describe some of the advantages and disadvantages of using Big-O notation.

Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g) or $f \leq g$ if there exist constants N and c so that for all $n \geq N$, $f(n) \leq c \cdot g(n)$.

Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g) or $f \leq g$ if there exist constants N and c so that for all $n \geq N$, $f(n) \leq c \cdot g(n)$.

f is bounded above by some constant multiple of g.

Big-O Notation

Example

$$3n^2 + 5n + 2 = O(n^2)$$
 since if $n \ge 1$,
 $3n^2 + 5n + 2 \le 3n^2 + 5n^2 + 2n^2 = 10n^2$.

Growth Rate

 $3n^2 + 5n + 2$ has the same growth rate as n^2

Using Big-O

We will use Big-*O* notation to report algorithm runtimes. This has several advantages.

Clarifies Growth Rate

Cleans up Notation

• $O(n^2)$ vs. $3n^2 + 5n + 2$. • O(n) vs. $n + \log_2(n) + \sin(n)$.

Cleans up Notation

O(n²) vs. 3n² + 5n + 2. O(n) vs. n + log₂(n) + sin(n). O(n log(n)) vs. 4n log₂(n) + 7. Note: log₂(n), log₃(n), log_x(n) differ by constant multiples, don't need to specify which.

Cleans up Notation

O(n²) vs. 3n² + 5n + 2. O(n) vs. n + log₂(n) + sin(n). O(n log(n)) vs. 4n log₂(n) + 7. Note: log₂(n), log₃(n), log_x(n) differ by constant multiples, don't need to specify which.

■ Makes algebra easier.

Can Ignore Complicated Details

No longer need to worry about:

Warning

- Using Big-O loses important information about constant multiples.
- Big-*O* is *only* asymptotic.