Introduction:
Using Big-0

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Algorithmic Design and Techniques
Algorithms and Data Structures at edX

http://bit.ly/algoedx1
https://www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures

Learning Objectives

Manipulate expressions involving Big-O
and other asymptotic notation.

Compute algorithm runtimes in terms of

Big-O.

Big-O Notation

Definition

f(n) = O(g(n)) (f is Big-O of g)or f < g
if there exist constants N and ¢ so that for
all n > N, f(n) < c-g(n).

Common Rules

Multiplicative constants can be omitted:

7 = 0(n?), & = O(r?)

Common Rules
Multiplicative constants can be omitted:
2
= 0(n), & = 0(n%)
n® < nPfor0<a< b

n= 0(n?), /n = O(n)

Common Rules

Multiplicative constants can be omitted:
7n® = 0(n®), %2 = 0(n?)

n® < nPfor0 < a< b
n= 0(n?), /n = O(n)

n® < b" (a>0,b>1)
= 0(v2"), n'% = 0(1.1")

Common Rules

Multiplicative constants can be omitted:
7n® = 0(n®), %2 = 0(n?)
n? < nbfor0<a< b
n= 0(n?), /n = O(n)
n® < b" (a>0,b>1)
= 0(v2"), n'% = 0(1.1")
(log n)? < n® (a,b > 0):
(log n)* = O(y/n), nlog n = O(n?)

Common Rules

Multiplicative constants can be omitted:
7n® = 0(n®), %2 = 0(n?)
n® < nPfor0 < a< b
n= 0(n?), /n = O(n)
n® < b" (a>0,b>1)
= 0(v2"), n'% = 0(1.1")
(log n)? < n® (a,b > 0):
(log n)* = O(y/n), nlog n = O(n?)
Smaller terms can be omitted :
n*+n= 0(n?), 2"+ n° = O(2")

Recall Algorithm

Function FibList(n)

create an array F[0...n]
F[0] <0
F[1] + 1
for / from 2 to n:
Fli] < F[i — 1] + F[i — 2]

return F[n]

Big-O in Practice

Operation Runtime

Big-O in Practice
Operation Runtime
create an array F[0...n| O(n)

Big-O in Practice
Operation Runtime

create an array F[0...n| O(n)
F[0] < 0 O(1)

Big-O in Practice

Operation Runtime
create an array F[0...n| O(n)
F[0] < 0 O(1)

F[1] <1 O(1)

Big-O in Practice

Operation Runtime
create an array F[0...n| O(n)
F[0] < 0 O(1)
F[1] + 1 O(1)

for i from 2 to n: Loop O(n) times

Big-O in Practice

Operation Runtime
create an array F[0...n| O(n)
F[0] < 0 O(1)
F[1] <1 O(1)
for i from 2 to n: Loop O(n) times

Fli] < F[i — 1]+ F[i — 2] O(n)

Big-O in Practice

Operation Runtime
create an array F[0...n| O(n)
F[0] < 0 O(1)
F[1] + 1 O(1)
for i from 2 to n: Loop O(n) times

F[i] < F[i — 1]+ F[i — 2] O(n)

return F[n] O(1)

Big-O in Practice

Operation Runtime
create an array F[0...n| O(n)
F[0] < 0 O(1)
F[1] <1 O(1)
for i from 2 to n: Loop O(n) times

F[i] < F[i — 1]+ F[i — 2] O(n)
return F[n] O(1)
Total:

O(n)+0(1)+0(1)+0(n)-0(n)+0(1) = O(n®).

Other Notation

Definition
For functions f, g : N — R™ we say that:
m f(n) = Q(g(n)) or f = g if for some c,
f(n) > c-g(n) (f grows no slower than
g).
m f(n) =0O(g(n)) or f <gif f=0(g)
and £ = Q(g) (f grows at the same rate
as g).

Other Notation

Definition
For functions f, g : N — R™ we say that:
m f(n) =o(g(n)) or f < gif
f(n)/g(n) — 0 as n — oo (f grows
slower than g).

Asymptotic Notation

Lets us ignore messy details in analysis.
Produces clean answers.

Throws away a lot of practically useful
information.

