
Programming Assignment 3:
Greedy Algorithms

Revision: December 26, 2017

Introduction
In this programming assignment, you will be practicing implementing greedy solutions. As usual, in some
problems you just need to implement an algorithm covered in the lectures, while for some others your goal
will be to first design an algorithm and then to implement it. Thus, you will be practicing designing an
algorithm, proving that it is correct, and implementing it.

Recall that starting from this programming assignment, the grader will show you only the first few tests.

Learning Outcomes
Upon completing this programming assignment you will be able to:

1. Apply greedy strategy to solve various computational problems. This will usually require you to design
an algorithm that repeatedly makes the most profitable move to construct a solution. You will then
need to show that the moves of your algorithm are safe, meaning that they are consistent with at least
one optimal solution.

2. Design and implement an efficient greedy algorithm for the following problems:

(a) changing money with a minimum number of coins;

(b) maximizing the total value of a loot;

(c) maximizing revenue in online ad placement;

(d) minimizing work while collecting signatures;

(e) maximizing the number of prize places in a competition;

(f) finally, maximizing your salary!

Passing Criteria: 3 out of 6
Passing this programming assignment requires passing at least 3 out of 6 programming challenges from this
assignment. In turn, passing a programming challenge requires implementing a solution that passes all the
tests for this problem in the grader and does so under the time and memory limits specified in the problem
statement.

1



Contents
1 Changing Money 3

2 Maximizing the Value of a Loot 4

3 Maximizing Revenue in Online Ad Placement 5

4 Collecting Signatures 6

5 Maximizing the Number of Prize Places in a Competition 8

6 Maximizing Your Salary 9

2



1 Changing Money

Problem Introduction

In this problem, you will design and implement an elementary greedy algorithm
used by cashiers all over the world millions of times per day.

Problem Description
Task. The goal in this problem is to find the minimum number of coins needed to change the input value

(an integer) into coins with denominations 1, 5, and 10.

Input Format. The input consists of a single integer 𝑚.

Constraints. 1 ≤ 𝑚 ≤ 103.

Output Format. Output the minimum number of coins with denominations 1, 5, 10 that changes 𝑚.

Sample 1.
Input:
2
Output:
2
2 = 1 + 1.

Sample 2.
Input:
28
Output:
6

28 = 10 + 10 + 5 + 1 + 1 + 1.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

3

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/


2 Maximizing the Value of a Loot

Problem Introduction

A thief finds much more loot than his bag can fit. Help him to find the most valuable combination
of items assuming that any fraction of a loot item can be put into his bag.

Problem Description
Task. The goal of this code problem is to implement an algorithm for the fractional knapsack problem.

Input Format. The first line of the input contains the number 𝑛 of items and the capacity 𝑊 of a knapsack.
The next 𝑛 lines define the values and weights of the items. The 𝑖-th line contains integers 𝑣𝑖 and 𝑤𝑖—the
value and the weight of 𝑖-th item, respectively.

Constraints. 1 ≤ 𝑛 ≤ 103, 0 ≤ 𝑊 ≤ 2 · 106; 0 ≤ 𝑣𝑖 ≤ 2 · 106, 0 < 𝑤𝑖 ≤ 2 · 106 for all 1 ≤ 𝑖 ≤ 𝑛. All the
numbers are integers.

Output Format. Output the maximal value of fractions of items that fit into the knapsack. The absolute
value of the difference between the answer of your program and the optimal value should be at most
10−3. To ensure this, output your answer with at least four digits after the decimal point (otherwise
your answer, while being computed correctly, can turn out to be wrong because of rounding issues).

Sample 1.
Input:
3 50
60 20
100 50
120 30
Output:
180.0000
To achieve the value 180, we take the first item and the third item into the bag.

Sample 2.
Input:
1 10
500 30
Output:
166.6667
Here, we just take one third of the only available item.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

4

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a427674d5cb770a8d000701


3 Maximizing Revenue in Online Ad Placement

Problem Introduction
You have 𝑛 ads to place on a popular Internet page. For each ad, you know how
much is the advertiser willing to pay for one click on this ad. You have set up 𝑛
slots on your page and estimated the expected number of clicks per day for each
slot. Now, your goal is to distribute the ads among the slots to maximize the
total revenue.

Problem Description
Task. Given two sequences 𝑎1, 𝑎2, . . . , 𝑎𝑛 (𝑎𝑖 is the profit per click of the 𝑖-th ad) and 𝑏1, 𝑏2, . . . , 𝑏𝑛 (𝑏𝑖 is

the average number of clicks per day of the 𝑖-th slot), we need to partition them into 𝑛 pairs (𝑎𝑖, 𝑏𝑗)
such that the sum of their products is maximized.

Input Format. The first line contains an integer 𝑛, the second one contains a sequence of integers
𝑎1, 𝑎2, . . . , 𝑎𝑛, the third one contains a sequence of integers 𝑏1, 𝑏2, . . . , 𝑏𝑛.

Constraints. 1 ≤ 𝑛 ≤ 103; −105 ≤ 𝑎𝑖, 𝑏𝑖 ≤ 105 for all 1 ≤ 𝑖 ≤ 𝑛.

Output Format. Output the maximum value of
𝑛∑︀

𝑖=1

𝑎𝑖𝑐𝑖, where 𝑐1, 𝑐2, . . . , 𝑐𝑛 is a permutation of

𝑏1, 𝑏2, . . . , 𝑏𝑛.

Sample 1.
Input:
1
23
39
Output:
897
897 = 23 · 39.

Sample 2.
Input:
3
1 3 -5
-2 4 1
Output:
23
23 = 3 · 4 + 1 · 1 + (−5) · (−2).

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

5

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a42769244a15008cd0006ff


4 Collecting Signatures

Problem Introduction
You are responsible for collecting signatures from all tenants of a certain build-
ing. For each tenant, you know a period of time when he or she is at home.
You would like to collect all signatures by visiting the building as few times as
possible.
The mathematical model for this problem is the following. You are given a set
of segments on a line and your goal is to mark as few points on a line as possible
so that each segment contains at least one marked point.

Problem Description
Task. Given a set of 𝑛 segments {[𝑎0, 𝑏0], [𝑎1, 𝑏1], . . . , [𝑎𝑛−1, 𝑏𝑛−1]} with integer coordinates on a line, find

the minimum number 𝑚 of points such that each segment contains at least one point. That is, find a
set of integers 𝑋 of the minimum size such that for any segment [𝑎𝑖, 𝑏𝑖] there is a point 𝑥 ∈ 𝑋 such
that 𝑎𝑖 ≤ 𝑥 ≤ 𝑏𝑖.

Input Format. The first line of the input contains the number 𝑛 of segments. Each of the following 𝑛 lines
contains two integers 𝑎𝑖 and 𝑏𝑖 (separated by a space) defining the coordinates of endpoints of the 𝑖-th
segment.

Constraints. 1 ≤ 𝑛 ≤ 100; 0 ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ 109 for all 0 ≤ 𝑖 < 𝑛.

Output Format. Output the minimum number 𝑚 of points on the first line and the integer coordinates
of 𝑚 points (separated by spaces) on the second line. You can output the points in any order. If there
are many such sets of points, you can output any set. (It is not difficult to see that there always exist
a set of points of the minimum size such that all the coordinates of the points are integers.)

Sample 1.
Input:
3
1 3
2 5
3 6
Output:
1
3
In this sample, we have three segments: [1, 3], [2, 5], [3, 6] (of length 2, 3, 3 respectively). All of them
contain the point with coordinate 3: 1 ≤ 3 ≤ 3, 2 ≤ 3 ≤ 5, 3 ≤ 3 ≤ 6.

6



Sample 2.
Input:
4
4 7
1 3
2 5
5 6
Output:
2
3 6
The second and the third segments contain the point with coordinate 3 while the first and the fourth
segments contain the point with coordinate 6. All the four segments cannot be covered by a single
point, since the segments [1, 3] and [5, 6] are disjoint.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

7

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a427c497acf2d0810000713


5 Maximizing the Number of Prize Places in a Competition

Problem Introduction
You are organizing a funny competition for children. As a prize fund you have 𝑛
candies. You would like to use these candies for top 𝑘 places in a competition
with a natural restriction that a higher place gets a larger number of candies.
To make as many children happy as possible, you are going to find the largest
value of 𝑘 for which it is possible.

Problem Description
Task. The goal of this problem is to represent a given positive integer 𝑛 as a sum of as many pairwise

distinct positive integers as possible. That is, to find the maximum 𝑘 such that 𝑛 can be written as
𝑎1 + 𝑎2 + · · ·+ 𝑎𝑘 where 𝑎1, . . . , 𝑎𝑘 are positive integers and 𝑎𝑖 ̸= 𝑎𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘.

Input Format. The input consists of a single integer 𝑛.

Constraints. 1 ≤ 𝑛 ≤ 109.

Output Format. In the first line, output the maximum number 𝑘 such that 𝑛 can be represented as a sum
of 𝑘 pairwise distinct positive integers. In the second line, output 𝑘 pairwise distinct positive integers
that sum up to 𝑛 (if there are many such representations, output any of them).

Sample 1.
Input:
6
Output:
3
1 2 3

Sample 2.
Input:
8
Output:
3
1 2 5

Sample 3.
Input:
2
Output:
1
2

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

8

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a427d2fd5cb770a7e000750


6 Maximizing Your Salary

Problem Introduction

As the last question of a successful interview, your boss gives you a few pieces of paper
with numbers on it and asks you to compose a largest number from these numbers. The
resulting number is going to be your salary, so you are very much interested in maximizing
this number. How can you do this?

In the lectures, we considered the following algorithm for composing the largest number out of the given
single-digit numbers.
LargestNumber(Digits):
answer← empty string
while Digits is not empty:

maxDigit← −∞
for digit in Digits:

if digit ≥ maxDigit:
maxDigit← digit

append maxDigit to answer
remove maxDigit from Digits

return answer
Unfortunately, this algorithm works only in case the input consists of single-digit numbers. For example, for
an input consisting of two integers 23 and 3 (23 is not a single-digit number!) it returns 233, while the largest
number is in fact 323. In other words, using the largest number from the input as the first number is not a
safe move.

Your goal in this problem is to tweak the above algorithm so that it works not only for single-digit
numbers, but for arbitrary positive integers.

Problem Description
Task. Compose the largest number out of a set of integers.

Input Format. The first line of the input contains an integer 𝑛. The second line contains integers
𝑎1, 𝑎2, . . . , 𝑎𝑛.

Constraints. 1 ≤ 𝑛 ≤ 100; 1 ≤ 𝑎𝑖 ≤ 103 for all 1 ≤ 𝑖 ≤ 𝑛.

Output Format. Output the largest number that can be composed out of 𝑎1, 𝑎2, . . . , 𝑎𝑛.
Sample 1.

Input:
2
21 2
Output:
221
Note that in this case the above algorithm also returns an incorrect answer 212.

9



Sample 2.
Input:
5
9 4 6 1 9
Output:
99641
In this case, the input consists of single-digit numbers only, so the algorithm above computes the right
answer.

Sample 3.
Input:
3
23 39 92
Output:
923923
As a coincidence, for this input the above algorithm produces the right result, though the input does
not have any single-digit numbers.

What To Do
Interestingly, for solving this problem, all you need to do is to replace the check digit ≥ maxDigit with a call
IsGreaterOrEqual(digit,maxDigit) for an appropriately implemented function IsGreaterOrEqual.
For example, IsGreaterOrEqual(2, 21) should return True.

Need Help?
Ask a question or see the questions asked by other learners at this forum thread.

10

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a427dbf44a15008cd000701

	Changing Money
	Maximizing the Value of a Loot
	Maximizing Revenue in Online Ad Placement
	Collecting Signatures
	Maximizing the Number of Prize Places in a Competition
	Maximizing Your Salary

