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What’s Coming

Solve salary maximization problem

Come up with a greedy algorithm

yourself

Solve optimal queue arrangement

problem

Generalize solutions using the concepts

of greedy choice, subproblem and safe

choice



Maximize Salary
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Largest Number

Toy problem

What is the largest number that consists of

digits 9, 8, 9, 6, 1? Use all the digits.

Examples

16899, 69891, 98961, . . .
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Toy problem

What is the largest number that consists of

digits 9, 8, 9, 6, 1? Use all the digits.

Examples

16899, 69891, 98961, . . .



Correct answer

99861



Greedy Strategy

{9, 8, 9, 6, 1} ?????

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list
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Greedy Strategy

Find max Append

Remove

9{9, 8, 9, 6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list
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Remove it from the list of digits

Repeat while there are digits in the list
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Find max Append

Remove

9{8, 9, 6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

{8, 9, 6, 1} 99

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list
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Repeat while there are digits in the list
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Find max Append
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99{8, 6, 1}

Find max digit

Append it to the number
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Repeat while there are digits in the list
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Find max Append

Remove

99{8, 6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

{8, 6, 1} 998

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

998{8, 6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list
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Find max Append

Remove

998{6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list
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Find max Append

Remove

998{6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

{6, 1} 9986

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

9986{6, 1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

9986{1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

9986{1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

{1} 99861

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

99861{1}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

99861{}

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list



Greedy Strategy

Find max Append

Remove

{9, 8, 9, 6, 1} 99861

Success!

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list
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Queue of Patients



Queue Arrangement

Input: n patients have come to the

doctor’s office at 9:00AM. They

can be treated in any order. For

i -th patient, the time needed for

treatment is ti . You need to

arrange the patients in such a

queue that the total waiting time is

minimized.

Output: The minimum total waiting time.



Optimal Queue Arrangement

t1 = 15, t2 = 20 and t3 = 10.

Arrangement (1, 2, 3):

First patient doesn’t wait

Second patient waits for 15 minutes

Third patient waits for 15 + 20 = 35

minutes

Total waiting time 15+ 35 = 50 minutes
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Optimal Queue Arrangement

t1 = 15, t2 = 20 and t3 = 10.

Arrangement (3, 1, 2):

First patient doesn’t wait

Second patient waits for 10 minutes

Third patient waits for 10 + 15 = 25

minutes

Total waiting time 10+ 25 = 35 minutes
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Optimal Queue Arrangement

t1 = 15, t2 = 20 and t3 = 10.

Arrangement (3, 1, 2):

First patient doesn’t wait

Second patient waits for 10 minutes

Third patient waits for 10 + 15 = 25

minutes

Total waiting time 10+ 25 = 35 minutes



Greedy Strategy

Make some greedy choice

Reduce to a smaller problem

Iterate



Greedy Choice

First treat the patient with the

maximum treatment time

First treat the patient with the

minimum treatment time

First treat the patient with average

treatment time



Greedy Algorithm

First treat the patient with the

minimum treatment time

Remove this patient from the queue

Treat all the remaining patients in such

order as to minimize their total waiting

time
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Greedy Algorithm

First treat the patient with the

minimum treatment time

Remove this patient from the queue

Treat all the remaining patients in such

order as to minimize their total waiting

time



Definition

Subproblem is a similar problem of smaller

size.



Subproblem

Examples

MaximumSalary(1, 9, 8, 9, 6) =

‘‘9’’ + MaximumSalary(1, 8, 9, 6)

Minimum total waiting time for n

patients =

(n − 1) · tmin+ minimum

total waiting time for n − 1 patients

without tmin
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Subproblem

Examples

MaximumSalary(1, 9, 8, 9, 6) =

‘‘9’’ + MaximumSalary(1, 8, 9, 6)

Minimum total waiting time for n

patients = (n − 1) · tmin+ minimum

total waiting time for n − 1 patients

without tmin



Safe Choice

Definition

A greedy choice is called safe choice if there

is an optimal solution consistent with this

first choice.



Lemma

To treat the patient with minimum

treatment time tmin first is a safe choice.



Proof Idea

Is it possible for an optimal arrangement to

have two consecutive patients in order with

treatment times t1 and t2 such that t1 > t2?

It is impossible. Assume there is such an

optimal arrangement and consider what

happens if we swap these two patients.
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Proof Idea

If we swap two consecutive patients with

treatment times t1 > t2:

Waiting time for all the patients before

and after these two doesn’t change

Waiting time for the patient which was

first increases by t2, and for the second

one it decreases by t1

Total waiting time increases by

t2 − t1 < 0, so it actually decreases
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Proof Idea

If we swap two consecutive patients with

treatment times t1 > t2:

Waiting time for all the patients before

and after these two doesn’t change

Waiting time for the patient which was

first increases by t2, and for the second

one it decreases by t1

Total waiting time increases by

t2 − t1 < 0, so it actually decreases



Proof Idea

We have just proved:

Lemma

In any optimal arrangement of the patients,

first of any two consecutive patients has

smaller treatment time.



Safe Choice Proof

Assume the patient with treatment time

tmin is not the first

Let i > 1 be the position of the first

patient with treatment time tmin in the

optimal arrangement

Then the patient at position i − 1 has

bigger treatment time — a

contradiction
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Conclusion

Now we know that the following greedy

algorithm works correctly:

First treat the patient with the

minimum treatment time

Remove this patient from the queue

Treat all the remaining patients in such

order as to minimize their total waiting

time
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MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros

for i from 1 to n:
tmin ← +∞
minIndex ← 0
for j from 1 to n:

if treated [j ] == 0 and t[j ] < tmin:

tmin ← t[j ]
minIndex ← j

waitingTime ← waitingTime + (n − i) · tmin

treated [minIndex ] = 1
return waitingTime
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Lemma

The running time of

MinTotalWaitingTime(t, n) is O(n2).

Proof

i changes from 1 to n

For each value of i , j changes from 1 to

n

This results in O(n2)
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Actually, this problem can be solved in

time O(n log n)

Instead of choosing the patient with

minimum treatment time out of

remaining ones n times, sort patients by

increasing treatment time

This sorted arrangement is optimal

It is possible to sort n patients in time

O(n log n) — you will learn how in the

next module
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Reduction to Subproblem

Make some first choice

Then solve a problem of the same kind

Smaller: fewer digits, fewer patients

This is called a “subproblem”



Safe choice

A choice is called safe if there is an

optimal solution consistent with this

first choice

Not all first choices are safe

Greedy choices are often unsafe
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General Strategy

Problem

Safe choice

Make a greedy choice

Prove that it is a safe choice

Reduce to a subproblem

Solve the subproblem
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