Greedy Algorithms: Introduction

Michael Levin

Department of Computer Science and Engineering University of California, San Diego

Outline

1 Maximize Your Salary

- **2** Queue of Patients
- **3** Implementation and Analysis
- **4** Main Ingredients

What's Coming

- Solve salary maximization problem
- Come up with a greedy algorithm yourself
- Solve optimal queue arrangement problem
- Generalize solutions using the concepts of greedy choice, subproblem and safe choice

Maximize Salary

Maximize Salary

Maximize Salary

Largest Number

Toy problem

What is the largest number that consists of digits 9, 8, 9, 6, 1? Use all the digits.

Largest Number

Toy problem

What is the largest number that consists of digits 9, 8, 9, 6, 1? Use all the digits.

Examples

 $16899, 69891, 98961, \ldots$

Correct answer

99861

Greedy Strategy

$\{9,8,9,6,1\} \longrightarrow \ref{eq:started}$

Greedy Strategy

Find max

$\{9, 8, 9, 6, 1\} \longrightarrow$

Find max digit

Greedy Strategy

Find max

$$\{9, 8, 9, 6, 1\} \longrightarrow$$

Find max digit

Find max digitAppend it to the number

Find max digitAppend it to the number

- Find max digit
- Append it to the number
- Remove it from the list of digits

- Find max digit
- Append it to the number
- Remove it from the list of digits

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

- Find max digit
- Append it to the number
- Remove it from the list of digits
- Repeat while there are digits in the list

Outline

1 Maximize Your Salary

2 Queue of Patients

3 Implementation and Analysis

4 Main Ingredients

Queue of Patients

Queue Arrangement

n patients have come to the Input: doctor's office at 9:00AM. They can be treated in any order. For *i*-th patient, the time needed for treatment is t_i . You need to arrange the patients in such a queue that the total waiting time is minimized.

Output: The minimum total waiting time.

- $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$. Arrangement (1, 2, 3):
 - First patient doesn't wait

 $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$.

Arrangement (1, 2, 3):

- First patient doesn't wait
- Second patient waits for 15 minutes

- $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$. Arrangement (1, 2, 3):
 - First patient doesn't wait
 - Second patient waits for 15 minutes
 - Third patient waits for 15 + 20 = 35 minutes

- $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$. Arrangement (1, 2, 3):
 - First patient doesn't wait
 - Second patient waits for 15 minutes
 - Third patient waits for 15 + 20 = 35 minutes
 - Total waiting time 15 + 35 = 50 minutes

- $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$. Arrangement (3, 1, 2):
 - First patient doesn't wait

 $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$.

Arrangement (3, 1, 2):

- First patient doesn't wait
- Second patient waits for 10 minutes

- $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$. Arrangement (3, 1, 2):
 - First patient doesn't wait
 - Second patient waits for 10 minutes
 - Third patient waits for 10 + 15 = 25 minutes

- $t_1 = 15$, $t_2 = 20$ and $t_3 = 10$. Arrangement (3, 1, 2):
 - First patient doesn't wait
 - Second patient waits for 10 minutes
 - Third patient waits for 10 + 15 = 25 minutes
 - Total waiting time 10 + 25 = 35 minutes

Greedy Strategy

- Make some greedy choice
- Reduce to a smaller problem
- Iterate

Greedy Choice

- First treat the patient with the maximum treatment time
- First treat the patient with the minimum treatment time
- First treat the patient with average treatment time

Greedy Algorithm

First treat the patient with the minimum treatment time

Greedy Algorithm

- First treat the patient with the minimum treatment time
- Remove this patient from the queue

Greedy Algorithm

- First treat the patient with the minimum treatment time
- Remove this patient from the queue
- Treat all the remaining patients in such order as to minimize their total waiting time

Definition

Subproblem is a similar problem of smaller size.

• MaximumSalary(1, 9, 8, 9, 6) =

Examples

MaximumSalary(1,9,8,9,6) = ''9'' +

Examples

Examples

MaximumSalary(1,9,8,9,6) =
 ''9'' + MaximumSalary(1,8,9,6)
 Minimum total waiting time for n
 patients =

Examples

MaximumSalary(1,9,8,9,6) =
 ''9'' + MaximumSalary(1,8,9,6)
Minimum total waiting time for n
 patients = (n-1) · t_{min}+

Examples

- MaximumSalary(1,9,8,9,6) = ''9'' + MaximumSalary(1,8,9,6)
- Minimum total waiting time for npatients = $(n - 1) \cdot t_{min}$ + minimum total waiting time for n - 1 patients without t_{min}

Safe Choice

Definition

A greedy choice is called safe choice if there is an optimal solution consistent with this first choice.

Lemma

To treat the patient with minimum treatment time t_{min} first is a safe choice.

Is it possible for an optimal arrangement to have two consecutive patients in order with treatment times t_1 and t_2 such that $t_1 > t_2$?

Is it possible for an optimal arrangement to have two consecutive patients in order with treatment times t_1 and t_2 such that $t_1 > t_2$?

It is impossible. Assume there is such an optimal arrangement and consider what happens if we swap these two patients.

If we swap two consecutive patients with treatment times $t_1 > t_2$:

 Waiting time for all the patients before and after these two doesn't change

If we swap two consecutive patients with treatment times $t_1 > t_2$:

- Waiting time for all the patients before and after these two doesn't change
- Waiting time for the patient which was first increases by t₂, and for the second one it decreases by t₁

If we swap two consecutive patients with treatment times $t_1 > t_2$:

- Waiting time for all the patients before and after these two doesn't change
- Waiting time for the patient which was first increases by t₂, and for the second one it decreases by t₁
- Total waiting time increases by
 t₂ t₁ < 0, so it actually decreases

We have just proved:

Lemma

In any optimal arrangement of the patients, first of any two consecutive patients has smaller treatment time.

Safe Choice Proof

 Assume the patient with treatment time *t_{min}* is not the first

Safe Choice Proof

- Assume the patient with treatment time *t_{min}* is not the first
- Let i > 1 be the position of the first patient with treatment time t_{min} in the optimal arrangement

Safe Choice Proof

- Assume the patient with treatment time *t_{min}* is not the first
- Let i > 1 be the position of the first patient with treatment time t_{min} in the optimal arrangement
- Then the patient at position *i* 1 has bigger treatment time — a contradiction

Conclusion

Now we know that the following greedy algorithm works correctly:

 First treat the patient with the minimum treatment time

Conclusion

Now we know that the following greedy algorithm works correctly:

- First treat the patient with the minimum treatment time
- Remove this patient from the queue

Conclusion

Now we know that the following greedy algorithm works correctly:

- First treat the patient with the minimum treatment time
- Remove this patient from the queue
- Treat all the remaining patients in such order as to minimize their total waiting time

Outline

- 1 Maximize Your Salary
- **2** Queue of Patients
- **3** Implementation and Analysis
- **4** Main Ingredients

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow i
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow i
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

```
waiting Time \leftarrow 0
treated \leftarrow array of n zeros
for i from 1 to n:
   t_{min} \leftarrow +\infty
   minIndex \leftarrow 0
   for j from 1 to n:
      if treated[j] == 0 and t[j] < t_{min}:
         t_{min} \leftarrow t[i]
         minIndex \leftarrow j
   waiting Time \leftarrow waiting Time + (n - i) \cdot t_{min}
   treated[minIndex] = 1
return waitingTime
```

Lemma

The running time of MinTotalWaitingTime(t, n) is $O(n^2)$.

The running time of MinTotalWaitingTime(t, n) is $O(n^2)$.

Proof

• *i* changes from 1 to *n*

Lemma

The running time of MinTotalWaitingTime(t, n) is $O(n^2)$.

Proof

i changes from 1 to *n*For each value of *i*, *j* changes from 1 to *n*

Lemma

The running time of MinTotalWaitingTime(t, n) is $O(n^2)$.

Proof

- *i* changes from 1 to *n*
- For each value of i, j changes from 1 to
 - n
- This results in $O(n^2)$

 Actually, this problem can be solved in time O(n log n)

- Actually, this problem can be solved in time O(n log n)
- Instead of choosing the patient with minimum treatment time out of remaining ones *n* times, sort patients by increasing treatment time

- Actually, this problem can be solved in time O(n log n)
- Instead of choosing the patient with minimum treatment time out of remaining ones n times, sort patients by increasing treatment time
- This sorted arrangement is optimal

- Actually, this problem can be solved in time O(n log n)
- Instead of choosing the patient with minimum treatment time out of remaining ones *n* times, sort patients by increasing treatment time
- This sorted arrangement is optimal
- It is possible to sort n patients in time
 O(n log n) you will learn how in the
 next module

Outline

- 1 Maximize Your Salary
- **2** Queue of Patients
- **3** Implementation and Analysis

Reduction to Subproblem

- Make some first choice
- Then solve a problem of the same kind
- Smaller: fewer digits, fewer patients
- This is called a "subproblem"

Safe choice

A choice is called safe if there is an optimal solution consistent with this first choice

Safe choice

- A choice is called safe if there is an optimal solution consistent with this first choice
- Not all first choices are safe

Safe choice

- A choice is called safe if there is an optimal solution consistent with this first choice
- Not all first choices are safe
- Greedy choices are often unsafe

Problem

greedy choice

Problem ·

Make a greedy choice

Problem — Safe choice

Make a greedy choice Prove that it is a safe choice

$\begin{array}{c} \mbox{General Strategy} \\ \mbox{Problem} & \xrightarrow{\mbox{greedy choice}} & \mbox{Subproblem} & \leftarrow & \m$

- Make a greedy choice
- Prove that it is a safe choice
- Reduce to a subproblem

- Make a greedy choice
- Prove that it is a safe choice
- Reduce to a subproblem
- Solve the subproblem