
Greedy Algorithms:
Celebration Party

Michael Levin

Department of Computer Science and Engineering
University of California, San Diego



Outline

1 Celebration Party Problem

2 Greedy Algorithm

3 Implementation and Analysis



Many children came to a celebration.

Organize them into the minimum possible

number of groups such that the age of any

two children in the same group differs by at

most two years.



Naive Algorithm

Try all possible distributions of children

into one or more groups

For each distribution, check whether any

two children in any group differ by at

most 2 years of age

Return the minimum number of groups

among valid distributions



Naive Algorithm

Try all possible distributions of children

into one or more groups

For each distribution, check whether any

two children in any group differ by at

most 2 years of age

Return the minimum number of groups

among valid distributions



Naive Algorithm

Try all possible distributions of children

into one or more groups

For each distribution, check whether any

two children in any group differ by at

most 2 years of age

Return the minimum number of groups

among valid distributions



Running time

Lemma

The running time of the naive algorithm is at

least 2n, where n is the number of children.



Proof

This algorithm will consider all possible

distributions of children into two groups (and

many other distributions of children into

groups). First of these two groups

corresponds to any subset of children, and

there are 2n different subsets.



Asymptotics

Naive algorithm works in time Ω(2n)

For n = 50 it is at least

250 = 1125899906842624

operations!

We will improve this significantly



Asymptotics

Naive algorithm works in time Ω(2n)

For n = 50 it is at least

250 = 1125899906842624

operations!

We will improve this significantly



Asymptotics

Naive algorithm works in time Ω(2n)

For n = 50 it is at least

250 = 1125899906842624

operations!

We will improve this significantly



Outline

1 Celebration Party Problem

2 Greedy Algorithm

3 Implementation and Analysis



Covering points by segments

Input: A set of n points x1, . . . , xn ∈ R.
Output: The minimum number of segments

of length at most 2 needed to cover

all the points.



Example



Example



Example



Connection with Grouping Children

Points x1, . . . , xn correspond to children’

ages

Segments correspond to groups

Any two children within the same

segment of length 2 differ by at most 2

years of age

Any valid group of children can be put

into a segment of length 2



Connection with Grouping Children

Points x1, . . . , xn correspond to children’

ages

Segments correspond to groups

Any two children within the same

segment of length 2 differ by at most 2

years of age

Any valid group of children can be put

into a segment of length 2



Connection with Grouping Children

Points x1, . . . , xn correspond to children’

ages

Segments correspond to groups

Any two children within the same

segment of length 2 differ by at most 2

years of age

Any valid group of children can be put

into a segment of length 2



Connection with Grouping Children

Points x1, . . . , xn correspond to children’

ages

Segments correspond to groups

Any two children within the same

segment of length 2 differ by at most 2

years of age

Any valid group of children can be put

into a segment of length 2



Safe choice: cover the leftmost point with a

segment of length 2 which starts in this

point.



Safe choice: cover the leftmost point with a

segment of length 2 which starts in this

point.



Safe choice: cover the leftmost point with a

segment of length 2 which starts in this

point.



Safe choice: cover the leftmost point with a

segment of length 2 which starts in this

point.



Greedy Algorithm

Cover the leftmost point with a segment

of length 2

Remove all the points within this

segment

Solve the same problem with the

remaining points



Greedy Algorithm

Cover the leftmost point with a segment

of length 2

Remove all the points within this

segment

Solve the same problem with the

remaining points



Greedy Algorithm

Cover the leftmost point with a segment

of length 2

Remove all the points within this

segment

Solve the same problem with the

remaining points



Outline

1 Celebration Party Problem

2 Greedy Algorithm

3 Implementation and Analysis



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Assume x1 ≤ x2 ≤ . . . ≤ xn

PointsCoverSorted(x1, . . . , xn)

segments← empty list

left← 1

while left ≤ n:

(ℓ, r)← (xleft, xleft + 2)

segments.append((ℓ, r))

left← left + 1

while left ≤ n and xleft ≤ r:

left← left + 1

return segments



Lemma

The running time of PointsCoverSorted is

O(n).

Proof

left changes from 1 to n

For each left, append at most 1 new

segment to solution

Overall, running time is O(n)



Lemma

The running time of PointsCoverSorted is

O(n).

Proof

left changes from 1 to n

For each left, append at most 1 new

segment to solution

Overall, running time is O(n)



Lemma

The running time of PointsCoverSorted is

O(n).

Proof

left changes from 1 to n

For each left, append at most 1 new

segment to solution

Overall, running time is O(n)



Lemma

The running time of PointsCoverSorted is

O(n).

Proof

left changes from 1 to n

For each left, append at most 1 new

segment to solution

Overall, running time is O(n)



Total Running Time

PointsCoverSorted works in O(n)

time

Sort {x1, x2, . . . , xn}, then call

PointsCoverSorted

Soon you’ll learn to sort in O(n log n)

Sort + PointsCoverSorted is

O(n log n)



Total Running Time

PointsCoverSorted works in O(n)

time

Sort {x1, x2, . . . , xn}, then call

PointsCoverSorted

Soon you’ll learn to sort in O(n log n)

Sort + PointsCoverSorted is

O(n log n)



Total Running Time

PointsCoverSorted works in O(n)

time

Sort {x1, x2, . . . , xn}, then call

PointsCoverSorted

Soon you’ll learn to sort in O(n log n)

Sort + PointsCoverSorted is

O(n log n)



Total Running Time

PointsCoverSorted works in O(n)

time

Sort {x1, x2, . . . , xn}, then call

PointsCoverSorted

Soon you’ll learn to sort in O(n log n)

Sort + PointsCoverSorted is

O(n log n)



Asymptotics

Straightforward solution is Ω(2n)

Very long for n = 50

Sort + greedy is O(n log n)

Fast for n = 10 000 000

Huge improvement!



Asymptotics

Straightforward solution is Ω(2n)

Very long for n = 50

Sort + greedy is O(n log n)

Fast for n = 10 000 000

Huge improvement!



Asymptotics

Straightforward solution is Ω(2n)

Very long for n = 50

Sort + greedy is O(n log n)

Fast for n = 10 000 000

Huge improvement!



Asymptotics

Straightforward solution is Ω(2n)

Very long for n = 50

Sort + greedy is O(n log n)

Fast for n = 10 000 000

Huge improvement!



Asymptotics

Straightforward solution is Ω(2n)

Very long for n = 50

Sort + greedy is O(n log n)

Fast for n = 10 000 000

Huge improvement!



Conclusion

Straightforward solution is exponential

Important to reformulate the problem in

mathematical terms

Safe choice is to cover leftmost point

Sort in O(n log n) + greedy in O(n)


	Celebration Party Problem
	Greedy Algorithm
	Implementation and Analysis

