
Divide-and-Conquer:
Sorting Problem

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Algorithmic Design and Techniques
Algorithms and Data Structures at edX

http://bit.ly/algoedx1
https://www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures


Outline

1 Problem Overview

2 Selection Sort

3 Merge Sort

4 Lower Bound for Comparison Based
Sorting

5 Non-Comparison Based Sorting Algorithms



Sorting Problem



Sorting

Input: Sequence A[1 . . . n].
Output: Permutation A′[1 . . . n] of A[1 . . . n]

in non-decreasing order.



Why Sorting?

Sorting data is an important step of
many efficient algorithms.

Sorted data allows for more efficient
queries.



Why Sorting?

Sorting data is an important step of
many efficient algorithms.
Sorted data allows for more efficient
queries.



Outline

1 Problem Overview

2 Selection Sort

3 Merge Sort

4 Lower Bound for Comparison Based
Sorting

5 Non-Comparison Based Sorting Algorithms



Selection sort: example

8 4 2 5 2

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

8 4 2 5 2

Find a minimum by scanning the array

Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

8 4 2 5 2

Find a minimum by scanning the array
Swap it with the first element

Repeat with the remaining part of the
array



Selection sort: example

2 4 8 5 2

Find a minimum by scanning the array
Swap it with the first element

Repeat with the remaining part of the
array



Selection sort: example

2 4 8 5 2

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 4 8 5 2

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 4 8 5 2

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 8 5 4

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 8 5 4

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 8 5 4

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 8 5 4

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 4 5 8

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 4 5 8

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 4 5 8

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 4 5 8

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



Selection sort: example

2 2 4 5 8

Find a minimum by scanning the array
Swap it with the first element
Repeat with the remaining part of the
array



SelectionSort(A[1 . . . n])

for i from 1 to n:
minIndex ← i

for j from i + 1 to n:
if A[j ] < A[minIndex ]:

minIndex ← j

{A[minIndex ] = minA[i . . . n]}
swap(A[i ],A[minIndex ])
{A[1 . . . i ] is in final position}

Online visualization: selection sort

http://www.sorting-algorithms.com/selection-sort


SelectionSort(A[1 . . . n])

for i from 1 to n:
minIndex ← i

for j from i + 1 to n:
if A[j ] < A[minIndex ]:

minIndex ← j

{A[minIndex ] = minA[i . . . n]}
swap(A[i ],A[minIndex ])
{A[1 . . . i ] is in final position}

Online visualization: selection sort

http://www.sorting-algorithms.com/selection-sort


Lemma
The running time of
SelectionSort(A[1 . . . n]) is O(n2).

Proof
n iterations of outer loop, at most n
iterations of inner loop.



Lemma
The running time of
SelectionSort(A[1 . . . n]) is O(n2).

Proof
n iterations of outer loop, at most n
iterations of inner loop.



Too Pessimistic Estimate?

As i grows, the number of iterations of
the inner loop decreases: j iterates from
i + 1 to n.

A more accurate estimate for the total
number of iterations of the inner loop is
(n − 1) + (n − 2) + · · · + 1.
We will show that this sum is Θ(n2)

implying that our initial estimate is
actually tight.



Too Pessimistic Estimate?

As i grows, the number of iterations of
the inner loop decreases: j iterates from
i + 1 to n.
A more accurate estimate for the total
number of iterations of the inner loop is
(n − 1) + (n − 2) + · · · + 1.

We will show that this sum is Θ(n2)

implying that our initial estimate is
actually tight.



Too Pessimistic Estimate?

As i grows, the number of iterations of
the inner loop decreases: j iterates from
i + 1 to n.
A more accurate estimate for the total
number of iterations of the inner loop is
(n − 1) + (n − 2) + · · · + 1.
We will show that this sum is Θ(n2)

implying that our initial estimate is
actually tight.



Arithmetic Series
Lemma

1 + 2 + · · · + n = n(n+1)
2

Proof

1 2 · · · n

n n − 1 · · · 1
n + 1 n + 1 · · · n + 1 = n(n + 1)



Arithmetic Series
Lemma

1 + 2 + · · · + n = n(n+1)
2

Proof

1 2 · · · n

n n − 1 · · · 1
n + 1 n + 1 · · · n + 1 = n(n + 1)



Alternative proof

+ =n

n n + 1

n



Selection Sort: Summary

Selection sort is an easy to implement
algorithm with running time O(n2).

Sorts in place: requires a constant
amount of extra memory.
There are many other quadratic time
sorting algorithms: e.g., insertion sort,
bubble sort.



Selection Sort: Summary

Selection sort is an easy to implement
algorithm with running time O(n2).
Sorts in place: requires a constant
amount of extra memory.

There are many other quadratic time
sorting algorithms: e.g., insertion sort,
bubble sort.



Selection Sort: Summary

Selection sort is an easy to implement
algorithm with running time O(n2).
Sorts in place: requires a constant
amount of extra memory.
There are many other quadratic time
sorting algorithms: e.g., insertion sort,
bubble sort.



Outline

1 Problem Overview

2 Selection Sort

3 Merge Sort

4 Lower Bound for Comparison Based
Sorting

5 Non-Comparison Based Sorting Algorithms



Example: merge sort

7 2 5 3 7 13 1 6



Example: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves



Example: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves

sort the halves recursively

2 3 5 7 1 6 7 13



Example: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves

sort the halves recursively

2 3 5 7 1 6 7 13
merge the sorted halves into one array

1 2 3 5 6 7 7 13



MergeSort(A[1 . . . n])

if n = 1:
return A

m← ⌊n/2⌋
B ← MergeSort(A[1 . . .m])

C ← MergeSort(A[m + 1 . . . n])
A′ ← Merge(B ,C )
return A′



Merging Two Sorted Arrays
Merge(B [1 . . . p],C [1 . . . q])
{B and C are sorted}
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move the rest of B and C to the end of D
return D



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13



Lemma
The running time of MergeSort(A[1 . . . n])
is O(n log n).

Proof

The running time of merging B and C is
O(n).
Hence the running time of
MergeSort(A[1 . . . n]) satisfies a
recurrence T (n) ≤ 2T (n/2) + O(n).



Lemma
The running time of MergeSort(A[1 . . . n])
is O(n log n).

Proof

The running time of merging B and C is
O(n).
Hence the running time of
MergeSort(A[1 . . . n]) satisfies a
recurrence T (n) ≤ 2T (n/2) + O(n).



n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1 · · · 1 1

...



n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1 · · · 1 1

...

log2 n



n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1 · · · 1 1

...

log2 n

work:

cn

+

2c n
2 = cn

+

4c n
4 = cn

+

...



n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

1 1 · · · 1 1

...

log2 n

work:

cn

+

2c n
2 = cn

+

4c n
4 = cn

+

...

Total: cn log2 n



Outline

1 Problem Overview

2 Selection Sort

3 Merge Sort

4 Lower Bound for Comparison Based
Sorting

5 Non-Comparison Based Sorting Algorithms



Definition
A comparison based sorting algorithm sorts
objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison
based.



Definition
A comparison based sorting algorithm sorts
objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison
based.



Lemma
Any comparison based sorting algorithm
performs Ω(n log n) comparisons in the worst
case to sort n objects.

In other words
For any comparison based sorting algorithm,
there exists an array A[1 . . . n] such that the
algorithm performs at least Ω(n log n)
comparisons to sort A.



Lemma
Any comparison based sorting algorithm
performs Ω(n log n) comparisons in the worst
case to sort n objects.

In other words
For any comparison based sorting algorithm,
there exists an array A[1 . . . n] such that the
algorithm performs at least Ω(n log n)
comparisons to sort A.



Decision Tree

a1 < a2?

a1 < a3?

a2 < a3?
yes

no

a2 < a3?no

a2 ≤ a1 ≤ a3yes

a1 ≤ a2 ≤ a3

yes

a3 ≤ a2 ≤ a1no

a2 ≤ a3 ≤ a1yes

a1 < a3?no
a1 ≤ a3 ≤ a2

yes

a3 ≤ a1 ≤ a2no



Estimating Tree Depth
the number of leaves ℓ in the tree must
be at least n! (the total number of
permutations)

the worst-case running time of the
algorithm (the number of comparisons
made) is at least the depth d

d ≥ log2 ℓ (or, equivalently, 2d ≥ ℓ)
thus, the running time is at least

log2(n!) = Ω(n log n)



Estimating Tree Depth
the number of leaves ℓ in the tree must
be at least n! (the total number of
permutations)
the worst-case running time of the
algorithm (the number of comparisons
made) is at least the depth d

d ≥ log2 ℓ (or, equivalently, 2d ≥ ℓ)
thus, the running time is at least

log2(n!) = Ω(n log n)



Estimating Tree Depth
the number of leaves ℓ in the tree must
be at least n! (the total number of
permutations)
the worst-case running time of the
algorithm (the number of comparisons
made) is at least the depth d

d ≥ log2 ℓ (or, equivalently, 2d ≥ ℓ)

thus, the running time is at least

log2(n!) = Ω(n log n)



Estimating Tree Depth
the number of leaves ℓ in the tree must
be at least n! (the total number of
permutations)
the worst-case running time of the
algorithm (the number of comparisons
made) is at least the depth d

d ≥ log2 ℓ (or, equivalently, 2d ≥ ℓ)
thus, the running time is at least

log2(n!) = Ω(n log n)



Lemma
log2(n!) = Ω(n log n)

Proof

log2(n!) = log2(1 · 2 · · · · · n)
= log2 1 + log2 2 + · · · + log2 n

≥ log2
n

2
+ · · · + log2 n

≥ n

2
log2

n

2
= Ω(n log n)



Outline

1 Problem Overview

2 Selection Sort

3 Merge Sort

4 Lower Bound for Comparison Based
Sorting

5 Non-Comparison Based Sorting Algorithms



Example: sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A 2 3 2 1 3 2 2 3 2 2 2 1



Example: sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A 2 3 2 1 3 2 2 3 2 2 2 1

1 2 3

Count 2 7 3



Example: sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A 2 3 2 1 3 2 2 3 2 2 2 1

1 2 3

Count 2 7 3

1 2 3 4 5 6 7 8 9 10 11 12

A′ 1 1 2 2 2 2 2 2 2 3 3 3



Example: sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A 2 3 2 1 3 2 2 3 2 2 2 1

1 2 3

Count 2 7 3

1 2 3 4 5 6 7 8 9 10 11 12

A′ 1 1 2 2 2 2 2 2 2 3 3 3

we have sorted these numbers
without actually comparing them!



Counting Sort: Ideas

Assume that all elements of A[1 . . . n]
are integers from 1 to M .

By a single scan of the array A, count
the number of occurrences of each
1 ≤ k ≤ M in the array A and store it
in Count[k].
Using this information, fill in the sorted
array A′.



Counting Sort: Ideas

Assume that all elements of A[1 . . . n]
are integers from 1 to M .
By a single scan of the array A, count
the number of occurrences of each
1 ≤ k ≤ M in the array A and store it
in Count[k].

Using this information, fill in the sorted
array A′.



Counting Sort: Ideas

Assume that all elements of A[1 . . . n]
are integers from 1 to M .
By a single scan of the array A, count
the number of occurrences of each
1 ≤ k ≤ M in the array A and store it
in Count[k].
Using this information, fill in the sorted
array A′.



CountSort(A[1 . . . n])
Count[1 . . .M]← [0, . . . , 0]
for i from 1 to n:

Count[A[i ]]← Count[A[i ]] + 1
{k appears Count[k] times in A}
Pos[1 . . .M]← [0, . . . , 0]
Pos[1]← 1
for j from 2 to M:

Pos[j ]← Pos[j − 1] + Count[j − 1]
{k will occupy range [Pos[k]...Pos[k + 1]− 1]}
for i from 1 to n:

A′[Pos[A[i ]]]← A[i ]
Pos[A[i ]]← Pos[A[i ]] + 1



Lemma
Provided that all elements of A[1 . . . n] are
integers from 1 to M , CountSort(A) sorts A
in time O(n +M).

Remark
If M = O(n), then the running time is O(n).



Lemma
Provided that all elements of A[1 . . . n] are
integers from 1 to M , CountSort(A) sorts A
in time O(n +M).

Remark
If M = O(n), then the running time is O(n).



Summary

Merge sort uses the divide-and-conquer
strategy to sort an n-element array in
time O(n log n).
No comparison based algorithm can do
this (asymptotically) faster.
One can do faster if something is known
about the input array in advance (e.g., it
contains small integers).


	Problem Overview
	Selection Sort
	Merge Sort
	Lower Bound for Comparison Based Sorting
	Non-Comparison Based Sorting Algorithms

