Divide-and-Conquer: Sorting Problem

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Outline

(1) Problem Overview

2 Selection Sort
(3) Merge Sort
(4) Lower Bound for Comparison Based

Sorting
(5) Non-Comparison Based Sorting Algorithms

Sorting Problem

Sorting

Input: Sequence $A[1 \ldots n]$.
Output: Permutation $A^{\prime}[1 \ldots n]$ of $A[1 \ldots n]$ in non-decreasing order.

Why Sorting?

- Sorting data is an important step of many efficient algorithms.

Why Sorting?

- Sorting data is an important step of many efficient algorithms.
- Sorted data allows for more efficient queries.

Outline

(1) Problem Overview

(2) Selection Sort

3 Merge Sort
(4) Lower Bound for Comparison Based Sorting
(5) Non-Comparison Based Sorting Algorithms

Selection sort: example

$$
\begin{array}{|l|l|l|l|l|}
\hline 8 & 4 & 2 & 5 & 2 \\
\hline
\end{array}
$$

Selection sort: example

$$
\begin{array}{|l|l|l|l|l|}
\hline 8 & 4 & 2 & 5 & 2 \\
\hline
\end{array}
$$

- Find a minimum by scanning the array

Selection sort: example

- Find a minimum by scanning the array
- Swap it with the first element

Selection sort: example

$$
\begin{array}{|l|l|l|l|l|}
\hline 2 & 4 & 8 & 5 & 2 \\
\hline
\end{array}
$$

- Find a minimum by scanning the array
- Swap it with the first element

Selection sort: example

\section*{| 2 | 4 | 8 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

$$
\begin{array}{|l|l|l|l|l}
\hline 2 & 4 & 8 & 5 & 2 \\
\hline
\end{array}
$$

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 4 | 8 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 8 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

$$
\begin{array}{l|l|l|l|l}
\hline 2 & 2 & 8 & 5 & 4 \\
\hline
\end{array}
$$

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 8 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 8 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 4 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 4 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 4 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 4 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

Selection sort: example

\section*{| 2 | 2 | 4 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

- Find a minimum by scanning the array
- Swap it with the first element
- Repeat with the remaining part of the array

SelectionSort $(A[1 \ldots n])$

for i from 1 to n : minlndex $\leftarrow i$
for j from $i+1$ to n :
if $A[j]<A[$ minlndex $]$: minIndex $\leftarrow j$
$\{A[$ minIndex $]=\min A[i \ldots n]\}$ $\operatorname{swap}(A[i], A[m i n / n d e x])$ \{A[1...i] is in final position\}

SelectionSort (A[1...n])

for i from 1 to n : minlndex $\leftarrow i$
for j from $i+1$ to n :
if $A[j]<A[$ minIndex]: minIndex $\leftarrow j$
$\{A[$ minIndex $]=\min A[i \ldots n]\}$ $\operatorname{swap}(A[i], A[m i n I n d e x])$ $\{A[1 \ldots i]$ is in final position\}

Online visualization: selection sort

Lemma

The running time of SelectionSort $(A[1 \ldots n])$ is $O\left(n^{2}\right)$.

Lemma

The running time of SelectionSort $(A[1 \ldots n])$ is $O\left(n^{2}\right)$.

Proof

n iterations of outer loop, at most n iterations of inner loop.

Too Pessimistic Estimate?

■ As i grows, the number of iterations of the inner loop decreases: j iterates from $i+1$ to n.

Too Pessimistic Estimate?

- As i grows, the number of iterations of the inner loop decreases: j iterates from $i+1$ to n.
- A more accurate estimate for the total number of iterations of the inner loop is $(n-1)+(n-2)+\cdots+1$.

Too Pessimistic Estimate?

- As i grows, the number of iterations of the inner loop decreases: j iterates from $i+1$ to n.
- A more accurate estimate for the total number of iterations of the inner loop is $(n-1)+(n-2)+\cdots+1$.
- We will show that this sum is $\Theta\left(n^{2}\right)$ implying that our initial estimate is actually tight.

Arithmetic Series

Lemma

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Arithmetic Series

Lemma

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Proof

$$
\begin{array}{cccc}
1 & 2 & \cdots & n \\
n & n-1 & \cdots & 1
\end{array}
$$

$$
n+1 \quad n+1 \quad \cdots \quad n+1=n(n+1)
$$

Alternative proof

Selection Sort: Summary

- Selection sort is an easy to implement algorithm with running time $O\left(n^{2}\right)$.

Selection Sort: Summary

- Selection sort is an easy to implement algorithm with running time $O\left(n^{2}\right)$.
- Sorts in place: requires a constant amount of extra memory.

Selection Sort: Summary

- Selection sort is an easy to implement algorithm with running time $O\left(n^{2}\right)$.
■ Sorts in place: requires a constant amount of extra memory.
- There are many other quadratic time sorting algorithms: e.g., insertion sort, bubble sort.

Outline

(1) Problem Overview
(2) Selection Sort
(3) Merge Sort
4) Lower Bound for Comparison Based

Sorting
(5) Non-Comparison Based Sorting Algorithms

Example: merge sort

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 \\
\hline
\end{array}
$$

Example: merge sort

$$
\left.\begin{array}{l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 \\
\hline
\end{array} \begin{aligned}
& \text { split the array into two halves } \\
& \hline 7
\end{aligned} \right\rvert\, \begin{array}{l|l|l|l|l|l}
\hline 7 & 5 & 3 & 73 & 1 & 6 \\
\hline
\end{array}
$$

Example: merge sort

| 7 | 2 | 5 | 3 | 7 | 13 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | split the array into two halves

| 7 | 2 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 7 | 13 |
| :--- | :--- |

sort the halves recursively

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 7 \\
\hline
\end{array}
$$

Example: merge sort

$$
\begin{array}{l|l|l|l|l|l|l|l}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 \\
\hline
\end{array}
$$ split the array into two halves

\section*{| 7 | 2 | 5 | 3 |
| :--- | :--- | :--- | :--- |
 | 7 | 13 | 1 | 6 |
| :--- | :--- | :--- | :--- |}

sort the halves recursively

$$
\begin{array}{|l|l|l|l|}
\hline 2 & 3 & 5 & 7 \\
\hline
\end{array} \quad \begin{array}{ll|l|l|}
\hline 1 & 6 & 7 & 13 \\
\hline
\end{array}
$$ merge the sorted halves into one array

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 6 & 7 & 7 & 13 \\
\hline
\end{array}
$$

MergeSort(A[1...n])

if $n=1$: return A
$m \leftarrow\lfloor n / 2\rfloor$
$B \leftarrow \operatorname{MergeSort}(A[1 \ldots m])$
$C \leftarrow \operatorname{MergeSort}(A[m+1 \ldots n])$
$A^{\prime} \leftarrow \operatorname{Merge}(B, C)$
return A^{\prime}

Merging Two Sorted Arrays

$\operatorname{Merge}(B[1 \ldots p], C[1 \ldots q])$

$\{B$ and C are sorted\}
$D \leftarrow$ empty array of size $p+q$
while B and C are both non-empty:
$b \leftarrow$ the first element of B
$c \leftarrow$ the first element of C
if $b \leq c$:
move b from B to the end of D
else:
move c from C to the end of D
move the rest of B and C to the end of D return D

Merge sort: example

Lemma

The running time of $\operatorname{MergeSort}(A[1 \ldots n])$ is $O(n \log n)$.

Lemma

The running time of $\operatorname{MergeSort}(A[1 \ldots n])$ is $O(n \log n)$.

Proof

- The running time of merging B and C is $O(n)$.
- Hence the running time of MergeSort $(A[1 \ldots n])$ satisfies a recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

1 1
1 1

work:

work:

Total: cn $\log _{2} n$

Outline

(1) Problem Overview

(2) Selection Sort

(3) Merge Sort
(4) Lower Bound for Comparison Based

Sorting
(5) Non-Comparison Based Sorting Algorithms

Definition

A comparison based sorting algorithm sorts objects by comparing pairs of them.

Definition

A comparison based sorting algorithm sorts objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison based.

Lemma

Any comparison based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

Lemma

Any comparison based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

In other words

For any comparison based sorting algorithm, there exists an array $A[1 \ldots n]$ such that the algorithm performs at least $\Omega(n \log n)$ comparisons to sort A.

Decision Tree

Estimating Tree Depth

- the number of leaves ℓ in the tree must be at least n ! (the total number of permutations)

Estimating Tree Depth

- the number of leaves ℓ in the tree must be at least n ! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth d

Estimating Tree Depth

- the number of leaves ℓ in the tree must be at least n ! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth d
- $d \geq \log _{2} \ell$ (or, equivalently, $2^{d} \geq \ell$)

Estimating Tree Depth

- the number of leaves ℓ in the tree must be at least n ! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth d
- $d \geq \log _{2} \ell$ (or, equivalently, $2^{d} \geq \ell$)
- thus, the running time is at least

$$
\log _{2}(n!)=\Omega(n \log n)
$$

Lemma

$\log _{2}(n!)=\Omega(n \log n)$

Proof

$$
\begin{aligned}
\log _{2}(n!) & =\log _{2}(1 \cdot 2 \cdots \cdot n) \\
& =\log _{2} 1+\log _{2} 2+\cdots+\log _{2} n \\
& \geq \log _{2} \frac{n}{2}+\cdots+\log _{2} n \\
& \geq \frac{n}{2} \log _{2} \frac{n}{2}=\Omega(n \log n)
\end{aligned}
$$

Outline

(1) Problem Overview

(2) Selection Sort
(3) Merge Sort
(4) Lower Bound for Comparison Based Sorting
(5) Non-Comparison Based Sorting Algorithms

Example: sorting small integers

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array} \\
& A \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 2 & 1 & 3 & 2 & 2 & 3 & 2 & 2 & 2 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Example: sorting small integers

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
1 & 2 & 3 \\
\hline
\end{array} \\
& \text { Count } \begin{array}{|l|l|l|}
\hline 2 & 7 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Example: sorting small integers

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
1 & 2 & 3
\end{array} \\
& \text { Count } \begin{array}{|l|l|l|}
\hline 2 & 7 & 3 \\
\cline { 2 - 3 } & & \\
\hline
\end{array} \\
& \downarrow \\
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array} \\
& A^{\prime} \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Example: sorting small integers

$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

we have sorted these numbers without actually comparing them!

\[

\]

Counting Sort: Ideas

- Assume that all elements of $A[1 \ldots n]$ are integers from 1 to M.

Counting Sort: Ideas

- Assume that all elements of $A[1 \ldots n]$ are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \leq k \leq M$ in the array A and store it in Count[k].

Counting Sort: Ideas

- Assume that all elements of $A[1 \ldots n]$ are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \leq k \leq M$ in the array A and store it in Count[k].
- Using this information, fill in the sorted array A^{\prime}.

CountSort ($A[1 \ldots n])$

Count $[1 \ldots M] \leftarrow[0, \ldots, 0]$
for i from 1 to n :
$\operatorname{Count}[A[i]] \leftarrow \operatorname{Count}[A[i]]+1$
$\{k$ appears Count[k] times in $A\}$
$\operatorname{Pos}[1 \ldots M] \leftarrow[0, \ldots, 0]$
$\operatorname{Pos}[1] \leftarrow 1$
for j from 2 to M :

$$
\operatorname{Pos}[j] \leftarrow \operatorname{Pos}[j-1]+\operatorname{Count}[j-1]
$$

$\{k$ will occupy range $[\operatorname{Pos}[k] \ldots \operatorname{Pos}[k+1]-1]\}$
for i from 1 to n :
$A^{\prime}[\operatorname{Pos}[A[i]]] \leftarrow A[i]$
$\operatorname{Pos}[A[i]] \leftarrow \operatorname{Pos}[A[i]]+1$

Lemma

Provided that all elements of $A[1 \ldots n]$ are integers from 1 to M, CountSort (A) sorts A in time $O(n+M)$.

Lemma

Provided that all elements of $A[1 \ldots n]$ are integers from 1 to M, CountSort (A) sorts A in time $O(n+M)$.

Remark

If $M=O(n)$, then the running time is $O(n)$.

Summary

■ Merge sort uses the divide-and-conquer strategy to sort an n-element array in time $O(n \log n)$.

- No comparison based algorithm can do this (asymptotically) faster.
- One can do faster if something is known about the input array in advance (e.g., it contains small integers).

