
Divide-and-Conquer:
Quick Sort

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Algorithmic Design and Techniques
Algorithms and Data Structures at edX

http://bit.ly/algoedx1
https://www.edx.org/micromasters/ucsandiegox-algorithms-and-data-structures


Outline

1 Overview

2 Algorithm

3 Random Pivot

4 Running Time Analysis

5 Equal Elements

6 Final Remarks



Quick Sort

comparison based algorithm
running time: O(n log n) (on average)
efficient in practice



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

partition with respect to x = A[1]
in particular, x is in its final position

1 4 2 3 4 6 6 9 7 8 9
≤ 6 > 6



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

partition with respect to x = A[1]
in particular, x is in its final position

1 4 2 3 4 6 6 9 7 8 9
sort the two parts recursively

1 2 3 4 4 6 6 7 8 9 9



Outline

1 Overview

2 Algorithm

3 Random Pivot

4 Running Time Analysis

5 Equal Elements

6 Final Remarks



QuickSort(A, ℓ, r)

if ℓ ≥ r:
return

m← Partition(A, ℓ, r)
{A[m] is in the final position}
QuickSort(A, ℓ,m − 1)
QuickSort(A,m + 1, r)



A

ℓ r

m← Partition(A, ℓ, r)

A x≤ x > x
m

A x

QuickSort(A, ℓ,m − 1) QuickSort(A,m + 1, r)

sorted



A

ℓ r

m← Partition(A, ℓ, r)

A x≤ x > x
m

A x

QuickSort(A, ℓ,m − 1) QuickSort(A,m + 1, r)

sorted



A

ℓ r

m← Partition(A, ℓ, r)

A x≤ x > x
m

A x

QuickSort(A, ℓ,m − 1) QuickSort(A,m + 1, r)

sorted



Partitioning: example

the pivot is x = A[ℓ]

move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j

A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

6 4 2 3 9 8 9 4 7 6 1
ℓ r

j i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

6 4 2 3 9 8 9 4 7 6 1
ℓ r

j i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j i

6 4 2 3 9 8 9 4 7 6 1



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j

6 4 2 3 9 8 9 4 7 6 1

i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j

6 4 2 3 9 8 9 4 7 6 1

i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j i

6 4 2 3 4 8 9 9 7 6 1



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

i

6 4 2 3 4 8 9 9 7 6 1

j



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

6 4 2 3 4 8 9 9 7 6 1

j i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j i

6 4 2 3 4 8 9 9 7 6 1



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j

6 4 2 3 4 8 9 9 7 6 1

i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

j

6 4 2 3 4 8 9 9 7 6 1

i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

i

6 4 2 3 4 6 9 9 7 8 1

j



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

6 4 2 3 4 6 9 9 7 8 1

j i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

6 4 2 3 4 6 9 9 7 8 1

j i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

6 4 2 3 4 6 9 9 7 8 1

j i



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

6 4 2 3 4 6 9 9 7 8 1

ij



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

i

6 4 2 3 4 6 1 9 7 8 9

j



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

i

6 4 2 3 4 6 1 9 7 8 9

j



Partitioning: example

the pivot is x = A[ℓ]
move i from ℓ + 1 to r maintaining the
following invariant:

A[k] ≤ x for all ℓ+ 1 ≤ k ≤ j
A[k] > x for all j + 1 ≤ k ≤ i

in the end, move A[ℓ] to its final place

ℓ r

ij

1 4 2 3 4 6 6 9 7 8 9



Partition(A, ℓ, r)

x ← A[ℓ] {pivot}
j ← ℓ

for i from ℓ + 1 to r:
if A[i ] ≤ x:

j ← j + 1
swap A[j ] and A[i ]

{A[ℓ + 1 . . . j ] ≤ x, A[j + 1 . . . i ] > x}
swap A[ℓ] and A[j ]

return j



Outline

1 Overview

2 Algorithm

3 Random Pivot

4 Running Time Analysis

5 Equal Elements

6 Final Remarks



Unbalanced Partitions

T (n) = n + T (n − 1):

T (n) = n+(n−1)+(n−2)+· · · = Θ(n2)

T (n) = n + T (n − 5) + T (4):

T (n) ≥ n+(n−5)+(n−10)+· · · = Θ(n2)



Unbalanced Partitions

T (n) = n + T (n − 1):

T (n) = n+(n−1)+(n−2)+· · · = Θ(n2)

T (n) = n + T (n − 5) + T (4):

T (n) ≥ n+(n−5)+(n−10)+· · · = Θ(n2)



Balanced Partitions

T (n) = 2T (n/2) + n:

T (n) = Θ(n log n)

T (n) = T (n/10) + T (9n/10) + n:

T (n) = Θ(n log n)



Balanced Partitions

T (n) = 2T (n/2) + n:

T (n) = Θ(n log n)

T (n) = T (n/10) + T (9n/10) + n:

T (n) = Θ(n log n)



Balanced Partitions
T (n) = T (n/10) + T (9n/10) + O(n)

log10 n

log10/9 n

T (n) = O(n log n)



Balanced Partitions
T (n) = T (n/10) + T (9n/10) + O(n)

log10 n

log10/9 n

T (n) = O(n log n)



Balanced Partitions
T (n) = T (n/10) + T (9n/10) + O(n)

log10 n

log10/9 n

T (n) = O(n log n)



Random Pivot
RandomizedQuickSort(A, ℓ, r)

if ℓ ≥ r:
return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

m← Partition(A, ℓ, r)
{A[m] is in the final position}
RandomizedQuickSort(A, ℓ,m − 1)
RandomizedQuickSort(A,m + 1, r)



Why Random?
half of the elements of A guarantees a
balanced partition:

A

sorted A
n/4 n/2 n/4



Theorem
Assume that all the elements of A[1 . . . n] are
pairwise different. Then the average running
time of RandomizedQuickSort(A) is
O(n log n) while the worst case running time
is O(n2).

Remark
Averaging is over random numbers used by
the algorithm, but not over the inputs.



Theorem
Assume that all the elements of A[1 . . . n] are
pairwise different. Then the average running
time of RandomizedQuickSort(A) is
O(n log n) while the worst case running time
is O(n2).

Remark
Averaging is over random numbers used by
the algorithm, but not over the inputs.



Outline

1 Overview

2 Algorithm

3 Random Pivot

4 Running Time Analysis

5 Equal Elements

6 Final Remarks



Proof Ideas: Comparisons
the running time is proportional to the
number of comparisons made

balanced partition are better since they
reduce the number of comparisons
needed:

5 1 2 4 7 3 6

1 5 4 3 6 7 2 3 1 2 4 6 5 7

1 is min 3, 1, 2 < 6, 5, 7



Proof Ideas: Comparisons
the running time is proportional to the
number of comparisons made
balanced partition are better since they
reduce the number of comparisons
needed:

5 1 2 4 7 3 6

1 5 4 3 6 7 2 3 1 2 4 6 5 7

1 is min 3, 1, 2 < 6, 5, 7



Proof Ideas: Probability

5 1 8 9 2 4 7 3 6A

1 2 3 4 5 6 7 8 9A′

Prob (1 and 9 are compared) =
2
9

Prob (3 and 4 are compared) = 1



Proof Ideas: Probability

5 1 8 9 2 4 7 3 6A

1 2 3 4 5 6 7 8 9A′

Prob (1 and 9 are compared) =

2
9

Prob (3 and 4 are compared) = 1



Proof Ideas: Probability

5 1 8 9 2 4 7 3 6A

1 2 3 4 5 6 7 8 9A′

Prob (1 and 9 are compared) =
2
9

Prob (3 and 4 are compared) = 1



Proof Ideas: Probability

5 1 8 9 2 4 7 3 6A

1 2 3 4 5 6 7 8 9A′

Prob (1 and 9 are compared) =
2
9

Prob (3 and 4 are compared) =

1



Proof Ideas: Probability

5 1 8 9 2 4 7 3 6A

1 2 3 4 5 6 7 8 9A′

Prob (1 and 9 are compared) =
2
9

Prob (3 and 4 are compared) = 1



Proof
let, for i < j ,

𝜒ij =

{︃
1 A′[i ] and A′[j ] are compared

0 otherwise

for all i < j , A′[i ] and A′[j ] are either
compared exactly once or not compared
at all (as we compare with a pivot)
this, in particular, implies that the worst
case running time is O(n2)



Proof
let, for i < j ,

𝜒ij =

{︃
1 A′[i ] and A′[j ] are compared

0 otherwise

for all i < j , A′[i ] and A′[j ] are either
compared exactly once or not compared
at all (as we compare with a pivot)

this, in particular, implies that the worst
case running time is O(n2)



Proof
let, for i < j ,

𝜒ij =

{︃
1 A′[i ] and A′[j ] are compared

0 otherwise

for all i < j , A′[i ] and A′[j ] are either
compared exactly once or not compared
at all (as we compare with a pivot)
this, in particular, implies that the worst
case running time is O(n2)



Proof (continued)

crucial observation: 𝜒ij = 1 iff the first
selected pivot in A′[i . . . j ] is A′[i ] or
A′[j ]

then Prob(𝜒ij) =
2

j−i+1 and
E(𝜒ij) =

2
j−i+1



Proof (continued)

crucial observation: 𝜒ij = 1 iff the first
selected pivot in A′[i . . . j ] is A′[i ] or
A′[j ]

then Prob(𝜒ij) =
2

j−i+1 and
E(𝜒ij) =

2
j−i+1



Proof (continued)
Then (the expected value of) the running
time is

E
n∑︁

i=1

n∑︁
j=i+1

𝜒ij =
n∑︁

i=1

n∑︁
j=i+1

E(𝜒ij)

=
∑︁
i<j

2
j − i + 1

≤ 2n ·
(︂
1
2
+

1
3
+ . . . +

1
n

)︂
= Θ(n log n)



Outline

1 Overview

2 Algorithm

3 Random Pivot

4 Running Time Analysis

5 Equal Elements

6 Final Remarks



Equal Elements

what if all the elements of the given
array are equal to each other?

quick sort visualization
the array is always split into two parts of
size 0 and n − 1
T (n) = n + T (n− 1) + T (0) and hence
T (n) = Θ(n2)!

http://www.sorting-algorithms.com/quick-sort


Equal Elements

what if all the elements of the given
array are equal to each other?
quick sort visualization

the array is always split into two parts of
size 0 and n − 1
T (n) = n + T (n− 1) + T (0) and hence
T (n) = Θ(n2)!

http://www.sorting-algorithms.com/quick-sort


Equal Elements

what if all the elements of the given
array are equal to each other?
quick sort visualization
the array is always split into two parts of
size 0 and n − 1

T (n) = n + T (n− 1) + T (0) and hence
T (n) = Θ(n2)!

http://www.sorting-algorithms.com/quick-sort


Equal Elements

what if all the elements of the given
array are equal to each other?
quick sort visualization
the array is always split into two parts of
size 0 and n − 1
T (n) = n + T (n− 1) + T (0) and hence
T (n) = Θ(n2)!

http://www.sorting-algorithms.com/quick-sort


To handle equal elements, we replace the line

m← Partition(A, ℓ, r)

with the line

(m1,m2)← Partition3(A, ℓ, r)

such that
for all ℓ ≤ k ≤ m1 − 1, A[k] < x

for all m1 ≤ k ≤ m2, A[k] = x

for all m2 + 1 ≤ k ≤ r , A[k] > x



A

ℓ r

(m1,m2)← Partition3(A, ℓ, r)

ℓ r

A = x< x > x
m1 m2



RandomizedQuickSort(A, ℓ, r)

if ℓ ≥ r:
return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

(m1,m2)← Partition3(A, ℓ, r)
{A[m1 . . .m2] is in final position}
RandomizedQuickSort(A, ℓ,m1 − 1)
RandomizedQuickSort(A,m2 + 1, r)



Outline

1 Overview

2 Algorithm

3 Random Pivot

4 Running Time Analysis

5 Equal Elements

6 Final Remarks



Tail Recursion Elimination

QuickSort(A, ℓ, r)

while ℓ < r:
m← Partition(A, ℓ, r)
QuickSort(A, ℓ,m − 1)
ℓ← m + 1



QuickSort(A, ℓ, r)

while ℓ < r:
m← Partition(A, ℓ, r)
if (m − ℓ) < (r −m):

QuickSort(A, ℓ,m − 1)
ℓ← m + 1

else:
QuickSort(A,m + 1, r)
r ← m − 1

Worst-case space requirement: O(log n)



QuickSort(A, ℓ, r)

while ℓ < r:
m← Partition(A, ℓ, r)
if (m − ℓ) < (r −m):

QuickSort(A, ℓ,m − 1)
ℓ← m + 1

else:
QuickSort(A,m + 1, r)
r ← m − 1

Worst-case space requirement: O(log n)



Intro Sort

runs quick sort with a simple
deterministic pivot selection heuristic
(say, median of the first, middle, and
last element)

if the recursion depth exceeds a certain
threshold c log n the algorithm switches
to heap sort
the running time is O(n log n) in the
worst case



Intro Sort

runs quick sort with a simple
deterministic pivot selection heuristic
(say, median of the first, middle, and
last element)
if the recursion depth exceeds a certain
threshold c log n the algorithm switches
to heap sort

the running time is O(n log n) in the
worst case



Intro Sort

runs quick sort with a simple
deterministic pivot selection heuristic
(say, median of the first, middle, and
last element)
if the recursion depth exceeds a certain
threshold c log n the algorithm switches
to heap sort
the running time is O(n log n) in the
worst case



Conclusion

Quick sort is a comparison based
algorithm

Running time: O(n log n) on average,
O(n2) in the worst case
Efficient in practice



Conclusion

Quick sort is a comparison based
algorithm
Running time: O(n log n) on average,
O(n2) in the worst case

Efficient in practice



Conclusion

Quick sort is a comparison based
algorithm
Running time: O(n log n) on average,
O(n2) in the worst case
Efficient in practice


	Overview
	Algorithm
	Random Pivot
	Running Time Analysis
	Equal Elements
	Final Remarks

