Divide-and-Conquer: Quick Sort

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Outline

(1) Overview
(2) Algorithm
(3) Random Pivot
(4) Running Time Analysis
(5) Equal Elements
(6) Final Remarks

Quick Sort

- comparison based algorithm
- running time: $O(n \log n$) (on average)
- efficient in practice

Example: quick sort

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 4 & 8 & 2 & 9 & 3 & 9 & 4 & 7 & 6 & 1 \\
\hline
\end{array}
$$

Example: quick sort

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 4 & 8 & 2 & 9 & 3 & 9 & 4 & 7 & 6 & 1 \\
\hline
\end{array}
$$

partition with respect to $x=A[1]$
in particular, x is in its final position

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 2 & 3 & 4 & 6 & 6 & 9 & 7 & 8 & 9
\end{array} \\
& \leq 6 \\
& >6
\end{aligned}
$$

Example: quick sort

6	4	8	2	9	3	9	4	7	6	1

partition with respect to $x=A[1]$
in particular, x is in its final position

\section*{| 1 | 4 | 2 | 3 | 4 | 6 | 6 | 9 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

sort the two parts recursively

1	2	3	4	4	6	6	7	8	9	9

Outline

(1) Overview
(2) Algorithm
(3) Random Pivot
(4) Running Time Analysis
(5) Equal Elements
(6) Final Remarks

QuickSort(A, ℓ, r)

if $\ell \geq r$:
return
$m \leftarrow \operatorname{Partition}(A, \ell, r)$
$\{A[m]$ is in the final position\}
QuickSort $(A, \ell, m-1)$
QuickSort $(A, m+1, r)$

Partitioning: example

- the pivot is $x=A[\ell]$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:
- $A[k] \leq x$ for all $\ell+1 \leq k \leq j$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:
- $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
- $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:
- $A[k] \leq x$ for all $\ell+1 \leq k \leq j$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:
- $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
- $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

- in the end, move $A[\ell]$ to its final place

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

- in the end, move $A[\ell]$ to its final place

Partitioning: example

- the pivot is $x=A[\ell]$
- move i from $\ell+1$ to r maintaining the following invariant:

> - $A[k] \leq x$ for all $\ell+1 \leq k \leq j$
> - $A[k]>x$ for all $j+1 \leq k \leq i$

- in the end, move $A[\ell]$ to its final place

Partition (A, ℓ, r)

$x \leftarrow A[\ell] \quad\{$ pivot $\}$
$j \leftarrow \ell$
for i from $\ell+1$ to r :

$$
\text { if } A[i] \leq x \text { : }
$$

$$
j \leftarrow j+1
$$ swap $A[j]$ and $A[i]$

$$
\{A[\ell+1 \ldots j] \leq x, \quad A[j+1 \ldots i]>x\}
$$

swap $A[\ell]$ and $A[j]$
return j

Outline

(1) Overview
(2) Algorithm
(3) Random Pivot
(4) Running Time Analysis
(5) Equal Elements
(6) Final Remarks

Unbalanced Partitions

$$
\begin{aligned}
T(n) & =n+T(n-1): \\
T(n) & =n+(n-1)+(n-2)+\cdots=\Theta\left(n^{2}\right)
\end{aligned}
$$

Unbalanced Partitions

- $T(n)=n+T(n-1)$:

$$
T(n)=n+(n-1)+(n-2)+\cdots=\Theta\left(n^{2}\right)
$$

- $T(n)=n+T(n-5)+T(4):$

$$
T(n) \geq n+(n-5)+(n-10)+\cdots=\Theta\left(n^{2}\right)
$$

Balanced Partitions

$$
\begin{aligned}
& -T(n)=2 T(n / 2)+n: \\
& T(n)=\Theta(n \log n)
\end{aligned}
$$

Balanced Partitions

$$
\begin{gathered}
T(n)=2 T(n / 2)+n: \\
T(n)=\Theta(n \log n) \\
T(n)=T(n / 10)+T(9 n / 10)+n: \\
T(n)=\Theta(n \log n)
\end{gathered}
$$

Balanced Partitions

$$
T(n)=T(n / 10)+T(9 n / 10)+O(n)
$$

Balanced Partitions

$T(n)=T(n / 10)+T(9 n / 10)+O(n)$

Balanced Partitions

$T(n)=T(n / 10)+T(9 n / 10)+O(n)$

$T(n)=O(n \log n)$

Random Pivot

RandomizedQuickSort(A, ℓ, r)

if $\ell \geq r$:
return
$k \leftarrow$ random number between ℓ and r swap $A[\ell]$ and $A[k]$ $m \leftarrow \operatorname{Partition}(A, \ell, r)$
$\{A[m]$ is in the final position $\}$
RandomizedQuickSort $(A, \ell, m-1)$
RandomizedQuickSort $(A, m+1, r)$

Why Random?

half of the elements of A guarantees a balanced partition:

sorted A

Theorem

Assume that all the elements of $A[1 \ldots n]$ are pairwise different. Then the average running time of RandomizedQuickSort (A) is
$O(n \log n)$ while the worst case running time is $O\left(n^{2}\right)$.

Theorem

Assume that all the elements of $A[1 \ldots n]$ are pairwise different. Then the average running time of RandomizedQuickSort (A) is
$O(n \log n)$ while the worst case running time is $O\left(n^{2}\right)$.

Remark

Averaging is over random numbers used by the algorithm, but not over the inputs.

Outline

(1) Overview
(2) Algorithm
(3) Random Pivot
4. Running Time Analysis
(5) Equal Elements
(6) Final Remarks

Proof Ideas: Comparisons

- the running time is proportional to the number of comparisons made

Proof Ideas: Comparisons

- the running time is proportional to the number of comparisons made
- balanced partition are better since they reduce the number of comparisons needed:

$$
\begin{array}{c|}
\hline 5 \\
\hline \begin{array}{l|l|l|l|l|l|}
\hline 2 & 1 & 2 & 4 & 7 & 3
\end{array} \\
\hline
\end{array}
$$

Proof Ideas: Probability

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline A & 5 & 5 & 8 & 9 & 2 & 4 & 7 & 3 & 6 \\
\hline A^{\prime} & \hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array}
$$

Proof Ideas: Probability

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
A & 5 & 5 & 1 & 8 & 9 & 2 & 4 & 7 \\
\hline
\end{array}
$$

$\operatorname{Prob}(1$ and 9 are compared $)=$

Proof Ideas: Probability

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline A & 5 & 5 & 8 & 9 & 2 & 4 & 7 & 3 \\
\hline
\end{array}
$$

$\operatorname{Prob}(1$ and 9 are compared $)=\frac{2}{9}$

Proof Ideas: Probability

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline 5 & 5 & 1 & 8 & 9 & 2 & 4 & 7 & 3 & 6 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|}
A^{\prime} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\end{aligned}
$$

$\operatorname{Prob}(1$ and 9 are compared $)=\frac{2}{9}$
$\operatorname{Prob}(3$ and 4 are compared $)=$

Proof Ideas: Probability

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
A & \hline & 5 & 1 & 8 & 9 & 2 & 4 & 7 & 3 \\
\hline
\end{array} A^{\prime} \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline
\end{array}
$$

$\operatorname{Prob}(1$ and 9 are compared $)=\frac{2}{9}$
$\operatorname{Prob}(3$ and 4 are compared $)=1$

Proof

- let, for $i<j$,

$$
\chi_{i j}= \begin{cases}1 & A^{\prime}[i] \text { and } A^{\prime}[j] \text { are compared } \\ 0 & \text { otherwise }\end{cases}
$$

Proof

■ let, for $i<j$,
$\chi_{i j}= \begin{cases}1 & A^{\prime}[i] \text { and } A^{\prime}[j] \text { are compared } \\ 0 & \text { otherwise }\end{cases}$

- for all $i<j, A^{\prime}[i]$ and $A^{\prime}[j]$ are either compared exactly once or not compared at all (as we compare with a pivot)

Proof

■ let, for $i<j$,
$\chi_{i j}= \begin{cases}1 & A^{\prime}[i] \text { and } A^{\prime}[j] \text { are compared } \\ 0 & \text { otherwise }\end{cases}$

- for all $i<j, A^{\prime}[i]$ and $A^{\prime}[j]$ are either compared exactly once or not compared at all (as we compare with a pivot)
- this, in particular, implies that the worst case running time is $O\left(n^{2}\right)$

Proof (continued)

■ crucial observation: $\chi_{i j}=1$ iff the first selected pivot in $A^{\prime}[i \ldots j]$ is $A^{\prime}[i]$ or $A^{\prime}[j]$

Proof (continued)

- crucial observation: $\chi_{i j}=1$ iff the first selected pivot in $A^{\prime}[i \ldots j]$ is $A^{\prime}[i]$ or $A^{\prime}[j]$
- then $\operatorname{Prob}\left(\chi_{i j}\right)=\frac{2}{j-i+1}$ and

$$
\mathrm{E}\left(\chi_{i j}\right)=\frac{2}{j-i+1}
$$

Proof (continued)

Then (the expected value of) the running time is

$$
\begin{aligned}
\mathrm{E} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \chi_{i j} & =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathrm{E}\left(\chi_{i j}\right) \\
& =\sum_{i<j} \frac{2}{j-i+1} \\
& \leq 2 n \cdot\left(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right) \\
& =\Theta(n \log n)
\end{aligned}
$$

Outline

(1) Overview
(2) Algorithm
(3) Random Pivot
(4) Running Time Analysis
(5) Equal Elements
(6) Final Remarks

Equal Elements

- what if all the elements of the given array are equal to each other?

Equal Elements

- what if all the elements of the given array are equal to each other?
- quick sort visualization

Equal Elements

- what if all the elements of the given array are equal to each other?
- quick sort visualization
- the array is always split into two parts of size 0 and $n-1$

Equal Elements

- what if all the elements of the given array are equal to each other?
- quick sort visualization
- the array is always split into two parts of size 0 and $n-1$
- $T(n)=n+T(n-1)+T(0)$ and hence $T(n)=\Theta\left(n^{2}\right)$!

To handle equal elements, we replace the line

$$
m \leftarrow \operatorname{Partition}(A, \ell, r)
$$

with the line

$$
\left(m_{1}, m_{2}\right) \leftarrow \operatorname{Partition} 3(A, \ell, r)
$$

such that

- for all $\ell \leq k \leq m_{1}-1, A[k]<x$
- for all $m_{1} \leq k \leq m_{2}, A[k]=x$

■ for all $m_{2}+1 \leq k \leq r, A[k]>x$

$\left(m_{1}, m_{2}\right) \leftarrow \operatorname{Partition} 3(A, \ell, r)$

RandomizedQuickSort (A, ℓ, r)

if $\ell \geq r$:
return
$k \leftarrow$ random number between ℓ and r swap $A[\ell]$ and $A[k]$
$\left(m_{1}, m_{2}\right) \leftarrow \operatorname{Partition} 3(A, \ell, r)$
$\left\{A\left[m_{1} \ldots m_{2}\right]\right.$ is in final position $\}$
RandomizedQuickSort $\left(A, \ell, m_{1}-1\right)$
RandomizedQuickSort $\left(A, m_{2}+1, r\right)$

Outline

(1) Overview
(2) Algorithm
(3) Random Pivot
(4) Running Time Analysis
(5) Equal Elements
(6) Final Remarks

Tail Recursion Elimination

QuickSort(A, ℓ, r)

while $\ell<r$:
$m \leftarrow \operatorname{Partition}(A, \ell, r)$
QuickSort $(A, \ell, m-1)$
$\ell \leftarrow m+1$

QuickSort (A, ℓ, r)

while $\ell<r$:
$m \leftarrow \operatorname{Partition}(A, \ell, r)$
if $(m-\ell)<(r-m)$:
QuickSort $(A, \ell, m-1)$
$\ell \leftarrow m+1$
else:

$$
\text { QuickSort }(A, m+1, r)
$$

$$
r \leftarrow m-1
$$

QuickSort (A, ℓ, r)

while $\ell<r$:

$$
\begin{aligned}
& m \leftarrow \operatorname{Partition}(A, \ell, r) \\
& \text { if }(m-\ell)<(r-m):
\end{aligned}
$$

$$
\text { QuickSort }(A, \ell, m-1)
$$

$$
\ell \leftarrow m+1
$$

else:

$$
\text { QuickSort }(A, m+1, r)
$$

$$
r \leftarrow m-1
$$

Worst-case space requirement: $O(\log n)$

Intro Sort

■ runs quick sort with a simple deterministic pivot selection heuristic (say, median of the first, middle, and last element)

Intro Sort

- runs quick sort with a simple deterministic pivot selection heuristic (say, median of the first, middle, and last element)
- if the recursion depth exceeds a certain threshold $c \log n$ the algorithm switches to heap sort

Intro Sort

■ runs quick sort with a simple deterministic pivot selection heuristic (say, median of the first, middle, and last element)

- if the recursion depth exceeds a certain threshold $c \log n$ the algorithm switches to heap sort
■ the running time is $O(n \log n)$ in the worst case

Conclusion

- Quick sort is a comparison based algorithm

Conclusion

- Quick sort is a comparison based algorithm
- Running time: $O(n \log n)$ on average, $O\left(n^{2}\right)$ in the worst case

Conclusion

- Quick sort is a comparison based algorithm
- Running time: $O(n \log n)$ on average, $O\left(n^{2}\right)$ in the worst case
- Efficient in practice

