Dynamic Programming: Change Problem

Pavel Pevzner

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures at edX

Outline

(1) Greedy Change

(2) Recursive Change

(3) Dynamic Programming

Change problem

Find the minimum number of coins needed to make change.

Formally

Change problem

Input: An integer money and positive integers coin $_{1}, \ldots$, coin $_{d}$.
Output: The minimum number of coins with denominations coin $_{1}, \ldots$, coin $_{d}$ that changes money.

Greedy Way

GreedyChange (money)

Change \leftarrow empty collection of coins while money >0 :
coin \leftarrow largest denomination that does not exceed money
add coin to Change
money \leftarrow money - coin
return Change

Changing Money

in the US

40 cents $=25+10+5$

Greedy

Changing Money

in Tanzania
$\begin{array}{rrr}40 \text { cents }=25+10+5 & = & 20+20 \\ \text { Greedy } & \text { is not } & \text { Optimal }\end{array}$

Outline

(1) Greedy Change

(2) Recursive Change
(3) Dynamic Programming

Recursive Change

Given the denominations 6,5 , and 1 , what is the minimum number of coins needed to change 9 cents?

MinNumCoins(9) $=$?

Recursive Change

Given the denominations 6,5 , and 1 , what is the minimum number of coins needed to change 9 cents?
$\{$ MinNumCoins $(9-6)+1$
$\operatorname{MinNumCoins}(9)=\min \{\operatorname{MinNumCoins}(9-5)+1$
MinNumCoins $(9-1)+1$
$\begin{array}{lllllllllll}\text { money } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
MinNumCoins

Recursive Change

Given the denominations 6,5 , and 1 , what is the minimum number of coins needed to change 9 cents?
$\operatorname{MinNumCoins}(9)=\min \left\{\begin{array}{l}\text { MinNumCoins(3) }+1 \\ \text { MinNumCoins(4) }+1 \\ \text { MinNumCoins }(8)+1\end{array}\right.$
$\begin{array}{lllllllllll}\text { money } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

MinNumCoins | | | | | | | | | $?$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Recursive Change

Given the denominations 6,5 , and 1 , what is the minimum number of coins needed to change 9 cents?
$\operatorname{MinNumCoins}(9)=\min \left\{\begin{array}{l}\text { MinNumCoins(3) }+1 \\ \text { MinNumCoins(4) }+1 \\ \text { MinNumCoins }(8)+1\end{array}\right.$

Recurrence for Change Problem

MinNumCoins(money) $=$

RecursiveChange(money, coins)

if money $=0$:
return 0
MinNumCoins $\leftarrow \infty$
for i from 1 to |coins|:
if money \geq coin $_{i}$:
NumCoins \leftarrow RecursiveChange(money - coin ${ }_{i}$, coins)
if NumCoins $+1<$ MinNumCoins:
MinNumCoins \leftarrow NumCoins +1
return MinNumCoins

How Fast is RecursiveChange?
(76)

How Fast is RecursiveChange?

How Fast is RecursiveChange?

How Fast is RecursiveChange?

How Fast is RecursiveChange?

How Fast is RecursiveChange?

the optimal coin combination for 70 cents is computed at least three times!

How Fast is RecursiveChange?

the optimal coin combination for 70 cents is computed at least three times!
the optimal coin combination for 30 cents is computed trillions of times!

Hint

Wouldn't it be nice to know all the answers for changing money - coin i_{i} by the time we need to compute an optimal way of changing money?

Hint

Wouldn't it be nice to know all the answers for changing money - coin ${ }_{i}$ by the time we need to compute an optimal way of changing money?

Instead of the time-consuming calls to
RecursiveChange(money-coin ${ }_{i}$, coins)

we would simply look up these values!

Outline

(1) Greedy Change

(2) Recursive Change

(3) Dynamic Programming

Dynamic Programming

What is the minimum number of coins needed to change 0 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 1 cent for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 2 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 3 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 4 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 5 cents for denominations 6,5 , and 1 ?

$\min \left\{\begin{array}{l}\text { MinNumCoins }(0)+1 \\ \text { MinNumCoins }(4)+1\end{array}\right.$

Dynamic Programming

What is the minimum number of coins needed to change 5 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 6 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 6 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 7 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 7 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 8 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 8 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 9 cents for denominations 6,5 , and 1 ?

Dynamic Programming

What is the minimum number of coins needed to change 9 cents for denominations 6,5 , and 1 ?

DPChange(money, coins)

MinNumCoins $(0) \leftarrow 0$
for m from 1 to money:
MinNumCoins $(m) \leftarrow \infty$
for i from 1 to |coins|:
if $m \geq \operatorname{coin}_{i}$:
NumCoins \leftarrow MinNumCoins $\left(m-\operatorname{coin}_{i}\right)+1$ if NumCoins < MinNumCoins (m) : MinNumCoins $(m) \leftarrow$ NumCoins
return MinNumCoins(money)

"Programming" in "Dynamic Programming" Has Nothing to Do with Programming!

Richard Bellman developed this idea in 1950s working on an Air Force project.
At that time, his approach seemed completely impractical.

He wanted to hide that he is really doing math from the Secretary of Defense.

Richard
Bellman

What name could I choose? I was interested in planning but planning, is not a good word for various reasons. I decided therefore to use the word, "programming" and I wanted to get across the idea that this was dynamic. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

