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TV commercial placement

Select a set of TV commercials (each
commercial has duration and cost) so that
the total revenue is maximal while the total
length does not exceed the length of the
available time slot.



Optimizing data center performance

Purchase computers for a data center to
achieve the maximal performance under
limited budget.



Knapsack Problem
(knapsack is another word for backpack)

Goal
Maximize
value ($)
while limiting
total
weight (kg)
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Problem Variations

knapsack

fractional
knapsack

discrete
knapsack

with
repetitions

without
repetitions

unlimited
quantities

one of each
item

greedy algorithm

greedy does not work
for discrete knapsack!
will design a dynamic
programming solution
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Why does greedy fail for the discrete
knapsack?

Example
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taking an element of maximum
value per unit of weight is not safe!
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Knapsack with repetitions problem

Input: Weights w1, . . . ,wn and values
v1, . . . , vn of n items; total
weight W (vi ’s, wi ’s, and W are
non-negative integers).

Output: The maximum value of items whose
weight does not exceed W . Each
item can be used any number of
times.
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If we take this item out then we get an
optimal solution for a knapsack of total
weight W − wi .
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Let value(w) be the maximum value of
knapsack of weight w .

value(w) = max
i : wi≤w

{value(w − wi) + vi}



Knapsack(W )

value(0)← 0
for w from 1 to W :

value(w)← 0
for i from 1 to n:

if wi ≤ w:
val ← value(w − wi) + vi
if val > value(w):

value(w)← val

return value(W )
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Knapsack without repetitions problem

Input: Weights w1, . . . ,wn and values
v1, . . . , vn of n items; total
weight W (vi ’s, wi ’s, and W are
non-negative integers).

Output: The maximum value of items whose
weight does not exceed W . Each
item can be used at most once.
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then what is left is an optimal solution
for a knapsack of total weight W − wn
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If the n-th item is not used, then the
whole knapsack must be filled in
optimally with items 1, 2, . . . , n − 1.
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For 0 ≤ w ≤ W and 0 ≤ i ≤ n, value(w , i)
is the maximum value achievable using a
knapsack of weight w and items 1, . . . , i .

The i -th item is either used or not:
value(w , i) is equal to

max{value(w−wi , i−1)+vi , value(w , i−1)}



Subproblems

For 0 ≤ w ≤ W and 0 ≤ i ≤ n, value(w , i)
is the maximum value achievable using a
knapsack of weight w and items 1, . . . , i .

The i -th item is either used or not:
value(w , i) is equal to

max{value(w−wi , i−1)+vi , value(w , i−1)}



Knapsack(W )

initialize all value(0, j)← 0
initialize all value(w , 0)← 0
for i from 1 to n:

for w from 1 to W :
value(w , i)← value(w , i − 1)
if wi ≤ w:

val ← value(w − wi , i − 1) + vi
if value(w , i) < val

value(w , i)← val
return value(W , n)
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Memoization
Knapsack(w)
if w is in hash table:

return value(w)
value(w)← 0
for i from 1 to n:

if wi ≤ w:
val ← Knapsack(w − wi) + vi
if val > value(w):

value(w)← val
insert value(w) into hash table with key w
return value(w)



What Is Faster?

If all subproblems must be solved then
an iterative algorithm is usually faster
since it has no recursion overhead.

There are cases however when one does
not need to solve all subproblems:
assume that W and all wi ’s are
multiples of 100; then value(w) is not
needed if w is not divisible by 100.
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Running Time
The running time O(nW ) is not
polynomial since the input size is
proportional to logW , but not W .

In other words, the running time is
O(n2logW ).
E.g., for

W = 71 345 970 345 617 824 751

(twentу digits only!) the algorithm
needs roughly 1020 basic operations.
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Running Time
The running time O(nW ) is not
polynomial since the input size is
proportional to logW , but not W .
In other words, the running time is
O(n2logW ).
E.g., for

W = 71 345 970 345 617 824 751

(twentу digits only!) the algorithm
needs roughly 1020 basic operations.

later, we’ll learn why
solving this problem

in polynomial time costs $1M!
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