
Programming Assignment 5:
Dynamic Programming 1

Revision: June 19, 2018

Introduction
In this programming assignment, you will be practicing implementing dynamic programming solutions.
As usual, in some code problems you just need to implement an algorithm covered in the lectures, while for
some others your goal will be to first design an algorithm and then implement it.

Learning Outcomes
Upon completing this programming assignment you will be able to:

1. Apply the dynamic programming technique to solve various computational problems. This will usu-
ally require you to design an algorithm that solves a problem by solving a collection of overlapping
subproblems (as opposed to the divide-and-conquer technique where subproblems are usually disjoint)
and combining the results.

2. See examples of optimization problems where a natural greedy strategy produces a non-optimal result.
You will see that a natural greedy move for these problems is not safe.

3. Design and implement an efficient algorithm for the following computational problems:

(a) Implement an efficient algorithm to compute the difference between two files or strings. Such
algorithms are widely used in spell checking programs and version control systems.

(b) Design and implement a dynamic programming algorithm for a novel computational problem.

Passing Criteria: 3 out of 5
Passing this programming assignment requires passing at least 3 out of 5 programming challenges from this
assignment. In turn, passing a programming challenge requires implementing a solution that passes all the
tests for this problem in the grader and does so under the time and memory limits specified in the problem
statement.

Contents
1 Money Change Again 2

2 Primitive Calculator 3

3 Computing the Edit Distance Between Two Strings 5

4 Longest Common Subsequence of Two Sequences 7

5 Longest Common Subsequence of Three Sequences 8

1



1 Money Change Again
As we already know, a natural greedy strategy for the change problem does not work correctly for any set of
denominations. For example, if the available denominations are 1, 3, and 4, the greedy algorithm will change
6 cents using three coins (4 + 1 + 1) while it can be changed using just two coins (3 + 3). Your goal now is
to apply dynamic programming for solving the Money Change Problem for denominations 1, 3, and 4.

Problem Description
Input Format. Integer money.

Output Format. The minimum number of coins with denominations 1, 3, 4 that changes money.

Constraints. 1 ≤ money ≤ 103.

Sample 1.
Input:
2
Output:
2
2 = 1 + 1.

Sample 2.
Input:
34
Output:
9
34 = 3 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4.

Need Help?
Ask a question or check out the questions asked by other learners at this forum thread.

2

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a428b7444a15008ac0006e9


2 Primitive Calculator

Problem Introduction

You are given a primitive calculator that can perform the following three operations with
the current number 𝑥: multiply 𝑥 by 2, multiply 𝑥 by 3, or add 1 to 𝑥. Your goal is given a
positive integer 𝑛, find the minimum number of operations needed to obtain the number 𝑛
starting from the number 1.

Problem Description
Task. Given an integer 𝑛, compute the minimum number of operations needed to obtain the number 𝑛

starting from the number 1.

Input Format. The input consists of a single integer 1 ≤ 𝑛 ≤ 106.

Output Format. In the first line, output the minimum number 𝑘 of operations needed to get 𝑛 from 1.
In the second line output a sequence of intermediate numbers. That is, the second line should contain
positive integers 𝑎0, 𝑎2, . . . , 𝑎𝑘−1 such that 𝑎0 = 1, 𝑎𝑘−1 = 𝑛 and for all 0 ≤ 𝑖 < 𝑘 − 1, 𝑎𝑖+1 is equal to
either 𝑎𝑖 + 1, 2𝑎𝑖, or 3𝑎𝑖. If there are many such sequences, output any one of them.

Sample 1.
Input:
1
Output:
0
1

Sample 2.
Input:
5
Output:
3
1 2 4 5
Here, we first multiply 1 by 2 two times and then add 1. Another possibility is to first multiply by 3
and then add 1 two times. Hence “1 3 4 5” is also a valid output in this case.

Sample 3.
Input:
96234
Output:
14
1 3 9 10 11 22 66 198 594 1782 5346 16038 16039 32078 96234
Again, another valid output in this case is “1 3 9 10 11 33 99 297 891 2673 8019 16038 16039 48117
96234”.

3



Starter Files
Going from 1 to 𝑛 is the same as going from 𝑛 to 1, each time either dividing the current number by 2 or 3
or subtracting 1 from it. Since we would like to go from 𝑛 to 1 as fast as possible it is natural to repeatedly
reduce 𝑛 as much as possible. That is, at each step we replace 𝑛 by min{𝑛/3, 𝑛/2, 𝑛 − 1} (the terms 𝑛/3
and 𝑛/2 are used only when 𝑛 is divisible by 3 and 2, respectively). We do this until we reach 1. This gives
rise to the following algorithm and it is implemented in the starter files:

GreedyCalculator(𝑛):
𝑛𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠← 0
while 𝑛 > 1:

𝑛𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠← 𝑛𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠+ 1
if 𝑛 mod 3 = 0:

𝑛← 𝑛/3
else if 𝑛 mod 2 = 0:

𝑛← 𝑛/2
else:

𝑛← 𝑛− 1
return 𝑛𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

This seemingly correct algorithm is in fact incorrect. You may want to submit one of the starter files to
ensure this. Hence in this case moving from 𝑛 to min{𝑛/3, 𝑛/2, 𝑛− 1} is not safe.

Need Help?
Ask a question or check out the questions asked by other learners at this forum thread.

4

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a428bb544a15008970007c7


3 Computing the Edit Distance Between Two Strings

Problem Introduction
The edit distance between two strings is the minimum number of operations (insertions, deletions, and
substitutions of symbols) to transform one string into another. It is a measure of similarity of two strings.
Edit distance has applications, for example, in computational biology, natural language processing, and spell
checking. Your goal in this problem is to compute the edit distance between two strings.

Problem Description
Task. The goal of this problem is to implement the algorithm for computing the edit distance between two

strings.

Input Format. Each of the two lines of the input contains a string consisting of lower case latin letters.

Constraints. The length of both strings is at least 1 and at most 100.

Output Format. Output the edit distance between the given two strings.

Sample 1.
Input:
ab
ab
Output:
0

Sample 2.
Input:
short
ports

Output:
3
An alignment of total cost 3:

s h o r t −
− p o r t s

Sample 3.
Input:
editing
distance
Output:
5
An alignment of total cost 5:

e d i − t i n g −
− d i s t a n c e

5



Need Help?
Ask a question or check out the questions asked by other learners at this forum thread.

6

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a428d097acf2d0847000650


4 Longest Common Subsequence of Two Sequences

Problem Introduction
Compute the length of a longest common subsequence of two sequences.

Problem Description
Task. Given two sequences 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, . . . , 𝑏𝑚), find the length of their longest

common subsequence, i.e., the largest non-negative integer 𝑝 such that there exist indices 1 ≤ 𝑖1 <
𝑖2 < · · · < 𝑖𝑝 ≤ 𝑛 and 1 ≤ 𝑗1 < 𝑗2 < · · · < 𝑗𝑝 ≤ 𝑚, such that 𝑎𝑖1 = 𝑏𝑗1 , . . . , 𝑎𝑖𝑝 = 𝑏𝑗𝑝 .

Input Format. First line: 𝑛. Second line: 𝑎1, 𝑎2, . . . , 𝑎𝑛. Third line: 𝑚. Fourth line: 𝑏1, 𝑏2, . . . , 𝑏𝑚.

Constraints. 1 ≤ 𝑛,𝑚 ≤ 100; −109 < 𝑎𝑖, 𝑏𝑖 < 109.

Output Format. Output 𝑝.

Sample 1.
Input:
3
2 7 5
2
2 5
Output:
2
A common subsequence of length 2 is (2, 5).

Sample 2.
Input:
1
7
4
1 2 3 4
Output:
0
The two sequences do not share elements.

Sample 3.
Input:
4
2 7 8 3
4
5 2 8 7
Output:
2
One common subsequence is (2, 7). Another one is (2, 8).

Need Help?
Ask a question or check out the questions asked by other learners at this forum thread.

7

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a428d81d5cb770abd00077a


5 Longest Common Subsequence of Three Sequences

Problem Introduction
Compute the length of a longest common subsequence of three sequences.

Problem Description
Task. Given three sequences 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝐵 = (𝑏1, 𝑏2, . . . , 𝑏𝑚), and 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑙), find the

length of their longest common subsequence, i.e., the largest non-negative integer 𝑝 such that there
exist indices 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑝 ≤ 𝑛, 1 ≤ 𝑗1 < 𝑗2 < · · · < 𝑗𝑝 ≤ 𝑚, 1 ≤ 𝑘1 < 𝑘2 < · · · < 𝑘𝑝 ≤ 𝑙 such
that 𝑎𝑖1 = 𝑏𝑗1 = 𝑐𝑘1

, . . . , 𝑎𝑖𝑝 = 𝑏𝑗𝑝 = 𝑐𝑘𝑝

Input Format. First line: 𝑛. Second line: 𝑎1, 𝑎2, . . . , 𝑎𝑛. Third line: 𝑚. Fourth line: 𝑏1, 𝑏2, . . . , 𝑏𝑚. Fifth line:
𝑙. Sixth line: 𝑐1, 𝑐2, . . . , 𝑐𝑙.

Constraints. 1 ≤ 𝑛,𝑚, 𝑙 ≤ 100; −109 < 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 < 109.

Output Format. Output 𝑝.

Sample 1.
Input:
3
1 2 3
3
2 1 3
3
1 3 5
Output:
2
A common subsequence of length 2 is (1, 3).

Sample 2.
Input:
5
8 3 2 1 7
7
8 2 1 3 8 10 7
6
6 8 3 1 4 7
Output:
3
One common subsequence of length 3 in this case is (8, 3, 7). Another one is (8, 1, 7).

Need Help?
Ask a question or check out the questions asked by other learners at this forum thread.

8

https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS200x+2T2017/discussion/forum/course/threads/5a428e84d5cb770aa8000734

	Money Change Again
	Primitive Calculator
	Computing the Edit Distance Between Two Strings
	Longest Common Subsequence of Two Sequences
	Longest Common Subsequence of Three Sequences

